Searching for periodic sources with LIGO

Type: Article

Publication Date: 1998-02-15

Citations: 243

DOI: https://doi.org/10.1103/physrevd.57.2101

Abstract

We investigate the computational requirements for all-sky, all-frequency searches for gravitational waves from spinning neutron stars, using archived data from interferometric gravitational wave detectors such as LIGO. These sources are expected to be weak, so the optimal strategy involves coherent accumulation of signal-to-noise using Fourier transforms of long stretches of data (months to years). Earth-motion-induced Doppler shifts, and intrinsic pulsar spindown, will reduce the narrow-band signal-to-noise by spreading power across many frequency bins; therefore, it is necessary to correct for these effects before performing the Fourier transform. The corrections can be implemented by a parametrized model, in which one does a search over a discrete set of parameter values (points in the parameter space of corrections). We define a metric on this parameter space, which can be used to determine the optimal spacing between points in a search; the metric is used to compute the number of independent parameter-space points ${N}_{p}$ that must be searched, as a function of observation time $T.$ This method accounts automatically for correlations between the spindown and Doppler corrections. The number ${N}_{p}(T)$ depends on the maximum gravitational wave frequency and the minimum spindown age $\ensuremath{\tau}=f/\mathrm{f\ifmmode \dot{}\else \.{}\fi{}}$ that the search can detect. The signal-to-noise ratio required, in order to have 99% confidence of a detection, also depends on ${N}_{p}(T).$ We find that for an all-sky, all-frequency search lasting ${T=10}^{7}\mathrm{s},$ this detection threshold is ${h}_{c}\ensuremath{\approx}(4--{5)h}_{3/\mathrm{y}\mathrm{r}},$ where ${h}_{3/\mathrm{y}\mathrm{r}}$ is the corresponding 99% confidence threshold if one knows in advance the pulsar position and spin period. We define a coherent search, over some data stream of length $T,$ to be one where we apply a correction, followed by a fast Fourier transform of the data, for every independent point in the parameter space. Given realistic limits on computing power, and assuming that data analysis proceeds at the same rate as data acquisition (e.g., 10 days of data gets analyzed in $\ensuremath{\sim}10\mathrm{days}$), we can place limitations on how much data can be searched coherently. In an all-sky search for pulsars having gravity-wave frequencies $f<~200\mathrm{Hz}$ and spindown ages $\ensuremath{\tau}>~1000\mathrm{yr},$ one can coherently search $\ensuremath{\sim}18\mathrm{days}$ of data on a teraflops computer. In contrast, a teraflops computer can only perform a $\ensuremath{\sim}0.8$-day coherent search for pulsars with frequencies $f<~1\mathrm{kHz}$ and spindown ages as low as 40 yr. In addition to all-sky searches we consider coherent directed searches, where one knows in advance the source position but not the period. (Nearby supernova remnants and the galactic center are obvious places to look.) We show that for such a search, one gains a factor of $\ensuremath{\sim}10$ in observation time over the case of an all-sky search, given a 1 Tflops computer. The enormous computational burden involved in coherent searches indicates the need for alternative data analysis strategies. As an example we briefly discuss the implementation of a simple hierarchical search in the last section of the paper. Further work is required to determine the optimal approach.

Locations

  • Physical review. D. Particles, fields, gravitation, and cosmology/Physical review. D. Particles and fields - View
  • arXiv (Cornell University) - View - PDF
  • MPG.PuRe (Max Planck Society) - View - PDF
  • CaltechAUTHORS (California Institute of Technology) - View - PDF
  • ScholarWorks @ UTRGV (The University of Texas Rio Grande Valley) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Searching for periodic sources with LIGO. II. Hierarchical searches 2000 P. R. Brady
J. D. E. Creighton
+ PDF Chat Optimally setting up directed searches for continuous gravitational waves in Advanced LIGO O1 data 2018 J. Ming
M. A. Papa
B. Krishnan
R. Prix
C. Beer
S. J. Zhu
H.-B. Eggenstein
O. Bock
B. Machenschalk
+ PDF Chat All-sky search for periodic gravitational waves in the full S5 LIGO data 2012 J. Abadie
B. P. Abbott
R. Abbott
T. D. Abbott
M. R. Abernathy
T. Accadia
F. Acernese
C. Adams
R. X. Adhikari
C. Affeldt
+ PDF Chat Einstein@Home search for periodic gravitational waves in LIGO S4 data 2009 B. Abbott
R. Abbott
R. X. Adhikari
P. Ajith
B. Allen
G. Allen
R. Amin
David P. Anderson
S. B. Anderson
W. G. Anderson
+ PDF Chat All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data 2009 B. P. Abbott
R. Abbott
R. X. Adhikari
P. Ajith
B. Allen
G. Allen
R. S. Amin
S. B. Anderson
W. G. Anderson
M. A. Arain
+ PDF Chat An improved, “phase-relaxed”F-statistic for gravitational-wave data analysis 2012 Curt Cutler
+ Banks of templates for directed and all-sky narrow-band searches of continuous gravitational waves from spinning neutron stars with several spindowns 2023 Andrzej Pisarski
P. Jaranowski
+ PDF Chat First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data 2017 B. P. Abbott
R. Abbott
T. D. Abbott
F. Acernese
K. Ackley
C. Adams
T. Adams
P. Addesso
R. X. Adhikari
V. B. Adya
+ PDF Chat Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data 2016 B. P. Abbott
R. Abbott
T. D. Abbott
M. R. Abernathy
F. Acernese
K. Ackley
C. Adams
T. Adams
P. Addesso
R. X. Adhikari
+ PDF Chat Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search 2010 P. Astone
K. M. Borkowski
P. Jaranowski
Maciej Pietka
A. Królak
+ PDF Chat Einstein@Home search for periodic gravitational waves in early S5 LIGO data 2009 B. P. Abbott
R. Abbott
R. X. Adhikari
P. Ajith
B. Allen
G. Allen
R. S. Amin
S. B. Anderson
W. G. Anderson
M. A. Arain
+ PDF Chat All-sky search for continuous gravitational waves from isolated neutron stars in the early O3 LIGO data 2021 R. Abbott
T. D. Abbott
S. Abraham
F. Acernese
K. Ackley
A. Adams
C. Adams
R. X. Adhikari
V. B. Adya
C. Affeldt
+ PDF Chat Searching for gravitational waves from Cassiopeia A with LIGO 2008 K. Wette
B. J. Owen
B. Allen
M. C. B. Ashley
J. Betzwieser
N. Christensen
J. D. E. Creighton
V. Dergachev
I. Gholami
E. Goetz
+ PDF Chat Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data 2013 J. Aasi
J. Abadie
B. P. Abbott
R. Abbott
T. D. Abbott
M. R. Abernathy
T. Accadia
F. Acernese
C. Adams
T. Adams
+ Search for continuous gravitational waves directed at sub-threshold radiometer candidates in O3 LIGO data 2023 A. M. Knee
Helen Du
E. Goetz
J. McIver
J. B. Carlin
L. Sun
Liam Dunn
L. C. Strang
H. Middleton
A. Melatos
+ PDF Chat Model-based cross-correlation search for gravitational waves from Scorpius X-1 2015 J. T. Whelan
Santosh Sundaresan
Yuanhao Zhang
Prabath Peiris
+ PDF Chat Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home search for continuous gravitational waves on LIGO sixth science run data 2016 M. A. Papa
H.-B. Eggenstein
Sinéad Walsh
I. Di Palma
B. Allen
Pia Astone
O. Bock
J. D. E. Creighton
D. Keitel
Bernd Machenschalk
+ PDF Chat All-sky search for periodic gravitational waves in LIGO S4 data 2008 B. Abbott
R. Abbott
R. X. Adhikari
J. Agresti
P. Ajith
B. Allen
R. Amin
S. B. Anderson
W. G. Anderson
M. Arain
+ PDF Chat Erratum: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D<b>77</b>, 022001 (2008)] 2009 B. Abbott
R. Abbott
R. X. Adhikari
J. Agresti
P. Ajith
B. Allen
R. Amin
S. B. Anderson
W. G. Anderson
M. Arain
+ First Falcon all-sky search for periodic gravitational waves 2019 Vladimir Dergachev
M. A. Papa