Almost sure well-posedness of the cubic nonlinear Schrödinger equation below L2(T)

Type: Article

Publication Date: 2012-02-01

Citations: 153

DOI: https://doi.org/10.1215/00127094-1507400

Abstract

We consider the Cauchy problem for the 1-dimensional periodic cubic nonlinear Schrödinger (NLS) equation with initial data below L2. In particular, we exhibit nonlinear smoothing when the initial data are randomized. Then, we prove local well-posedness of the NLS equation almost surely for the initial data in the support of the canonical Gaussian measures on Hs(T) for each s>−13, and global well-posedness for each s>−112.

Locations

  • Duke Mathematical Journal - View
  • arXiv (Cornell University) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2018 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation 2019 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schr\"odinger equation 2018 Benjamin Dodson
Jonas Lührmann
Dana Mendelson
+ Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data 2021 Martin Spitz
+ Almost sure well-posedness and scattering of the 3D cubic nonlinear Schrödinger equation 2021 Jia Shen
Avy Soffer
Yifei Wu
+ PDF Chat Almost sure local well-posedness for the supercritical quintic NLS 2018 Justin T. Brereton
+ Almost sure scattering for the defocusing cubic nonlinear Schrödinger equation on $\mathbb{R}^3\times\mathbb{T}$ 2023 Luo Yongming
+ PDF Chat Almost sure local wellposedness and scattering for the energy-critical cubic nonlinear Schrödinger equation with supercritical data 2022 Martin Spitz
+ Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators 2022 Jean‐Baptiste Casteras
Juraj Földes
Gennady Uraltsev
+ Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schr\"odinger equation on $\mathbb{R}^3$ 2017 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb{R}^3$ 2017 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ PDF Chat Almost Sure Well-Posedness and Scattering of the 3D Cubic Nonlinear Schrödinger Equation 2022 Jia Shen
Avy Soffer
Yifei Wu
+ PDF Chat Random data theory for the cubic fourth-order nonlinear Schrödinger equation 2020 Van Duong Dinh
+ Random data theory for the cubic fourth-order nonlinear Schrödinger equation 2020 Van Duong Dinh
+ PDF Chat Remarks on Nonlinear Smoothing under Randomization for the Periodic KdV and the Cubic Szegö Equation 2011 Tadahiro Oh
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on $\mathbb R^d$, $d \geq 3$ 2014 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ PDF Chat Probabilistic well-posedeness for the nonlinear Schr\"odinger equation on the $2d$ sphere I: positive regularities 2024 Nicolas Burq
Nicolas Camps
Chenmin Sun
Nikolay Tzvetkov
+ PDF Chat Probabilistic well-posedness of generalized cubic nonlinear Schr\"odinger equations with strong dispersion using higher order expansions 2024 Jean-Baptiste Castéras
Juraj Földes
Itamar Oliveira
Gennady Uraltsev
+ Regularity properties of the cubic nonlinear Schr\"odinger equation on the half line 2015 M. Burak Erdoğan
Nikolaos Tzirakis