Symmetric Linearizations for Matrix Polynomials

Type: Article

Publication Date: 2006-12-26

Citations: 134

DOI: https://doi.org/10.1137/050646202

Abstract

A standard way of treating the polynomial eigenvalue problem $P(\lambda)x = 0$ is to convert it into an equivalent matrix pencil—a process known as linearization. Two vector spaces of pencils $\mathbb{L}_1(P)$ and $\mathbb{L}_2(P)$, and their intersection $\mathbb{DL}(P)$, have recently been defined and studied by Mackey, Mackey, Mehl, and Mehrmann. The aim of our work is to gain new insight into these spaces and the extent to which their constituent pencils inherit structure from P. For arbitrary polynomials we show that every pencil in $\mathbb{DL}(P)$ is block symmetric and we obtain a convenient basis for $\mathbb{DL}(P)$ built from block Hankel matrices. This basis is then exploited to prove that the first $\deg(P)$ pencils in a sequence constructed by Lancaster in the 1960s generate $\mathbb{DL}(P)$. When P is symmetric, we show that the symmetric pencils in $\mathbb{L}_1(P)$ comprise $\mathbb{DL}(P)$, while for Hermitian P the Hermitian pencils in $\mathbb{L}_1(P)$ form a proper subset of $\mathbb{DL}(P)$ that we explicitly characterize. Almost all pencils in each of these subsets are shown to be linearizations. In addition to obtaining new results, this work provides a self‐contained treatment of some of the key properties of $\mathbb{DL}(P)$ together with some new, more concise proofs.

Locations

  • SIAM Journal on Matrix Analysis and Applications - View
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • MIMS EPrints (University of Southampton) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Vector Spaces of Linearizations for Matrix Polynomials 2006 D. Steven Mackey
Niloufer Mackey
Christian Mehl
Volker Mehrmann
+ Structured Linearizations for Matrix Polynomials 2006 D. Steven Mackey
+ Block Kronecker ansatz spaces for matrix polynomials 2017 Heike Faßbender
Philip Saltenberger
+ Vector spaces of linearizations for matrix polynomials: a bivariate polynomial approach 2016 Yuji Nakatsukasa
Vanni Noferini
Alex Townsend
+ A duality relation for matrix pencils with application to linearizations 2011 Federico Poloni
+ Linearizations of matrix polynomials viewed as Rosenbrock's system matrices 2023 Froilán M. Dopico
Silvia Marcaida
María C. Quintana
Paul Van Dooren
+ Linearizations of matrix polynomials viewed as Rosenbrock's system matrices 2022 Froilán M. Dopico
S. Marcaida
María C. Quintana
Paul Van Dooren
+ On a new kind of Ansatz Spaces for Matrix Polynomials 2016 Heike Faßbender
Philip Saltenberger
+ The $\mathbb{DL}(P)$ vector space of pencils for singular matrix polynomials 2022 Froilán M. Dopico
Vanni Noferini
+ On a new kind of Ansatz Spaces for Matrix Polynomials 2016 Heike Faßbender
Philip Saltenberger
+ PDF Chat Large vector spaces of block-symmetric strong linearizations of matrix polynomials 2015 M.I. Bueno
Froilán M. Dopico
Susana Furtado
M. Rychnovsky
+ Structured strong linearizations from Fiedler pencils with repetition I 2014 M.I. Bueno
K. Curlett
Susana Furtado
+ PDF Chat Vector Spaces of Linearizations for Matrix Polynomials: A Bivariate Polynomial Approach 2017 Yuji Nakatsukasa
Vanni Noferini
Alex Townsend
+ Structured Linearizations for Palindromic Matrix Polynomials of Odd Degree 2010 Fernando De Terán
Froilán M. Dopico
D. Steven Mackey
+ Generalized companion forms for scalar and matrix polynomials 2020 Carla Hernando Fuster
+ Vector Spaces of Generalized Linearizations for Rectangular Matrix Polynomials 2018 Biswajit Das
Shreemayee Bora
+ PDF Chat Constructing Strong Linearizations of Matrix Polynomials Expressed in Chebyshev Bases 2017 Piers W. Lawrence
Javier Pérez
+ PDF Chat Definite Matrix Polynomials and their Linearization by Definite Pencils 2009 Nicholas J. Higham
D. Steven Mackey
Françoise Tisseur
+ Algebraic Linearizations of Matrix Polynomials 2018 Eunice Y. S. Chan
Robert M. Corless
Laureano González-Vega
Juana Sendra
Juana Sendra
+ Algebraic Linearizations of Matrix Polynomials 2018 Eunice Y. S. Chan
Robert M. Corless
Laureano González-Vega
Juana Sendra
Juana Sendra

Works That Cite This (116)

Action Title Year Authors
+ Structured backward error analysis of linearized structured polynomial eigenvalue problems 2018 Froilán M. Dopico
Javier Pérez
Paul Van Dooren
+ Miniversal deformations of pairs of symmetric matrices under congruence 2018 Andrii Dmytryshyn
+ PDF Chat A block-symmetric linearization of odd degree matrix polynomials with optimal eigenvalue condition number and backward error 2018 M.I. Bueno
Froilán M. Dopico
Susana Furtado
Luis Medina
+ Explicit block-structures for block-symmetric Fiedler-like pencils 2017 Maribel Bueno Cachadina
Madeleine Martin
Javier Pérez
Alexander Song
Irina Viviano
+ Quadratic Eigenvalue Problems under Conic Constraints 2011 Alberto Seeger
+ PDF Chat Generic Symmetric Matrix Polynomials with Bounded Rank and Fixed Odd Grade 2020 Fernando De Terán
Andrii Dmytryshyn
Froilán M. Dopico
+ PDF Chat Spectral theory for self-adjoint quadratic eigenvalue problems - a review 2021 Peter Lancaster
I. Zaballa
+ PDF Chat Structured Polynomial Eigenvalue Problems: Good Vibrations from Good Linearizations 2006 D. Steven Mackey
Niloufer Mackey
Christian Mehl
Volker Mehrmann
+ PDF Chat On the sign characteristic of Hermitian linearizations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mi mathvariant="double-struck">DL</mml:mi></mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mi>P</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> 2017 M.I. Bueno
Jane Breen
S. Ford
Susana Furtado
+ Structured strong linearizations from Fiedler pencils with repetition II 2014 M.I. Bueno
Susana Furtado