On the Gibbs Phenomenon and Its Resolution

Type: Article

Publication Date: 1997-01-01

Citations: 782

DOI: https://doi.org/10.1137/s0036144596301390

Locations

  • SIAM Review - View

Similar Works

Action Title Year Authors
+ A Review of David Gottlieb’s Work on the Resolution of the Gibbs Phenomenon 2010 Sigal Gottlieb
Jae-Hun Jung
Saeja Kim
+ On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function 1995 David Gottlieb
Chi‐Wang Shu
+ On the Gibbs Phenomenon IV: Recovering Exponential Accuracy in a Subinterval from a Gegenbauer Partial Sum of a Piecewise Analytic Function 1995 David Gottlieb
Chi‐Wang Shu
+ On the Gibbs Phenomenon III: Recovering Exponential Accuracy in a Sub-Interval From a Spectral Partial Sum of a Pecewise Analytic Function 1996 David Gottlieb
Chi‐Wang Shu
+ Fourier series and the Gibbs phenomenon 1992 William J. Thompson
+ Series Expansions Containing Explicitly Gibbs Phenomenon Characteristics 2009 Masanori Kobayashi
Naoya Soda
+ An averaging method for the Fourier approximation to discontinuous functions 2006 Beong In Yun
Hyun Chul Kim
Kyung Soo Rim
+ PDF Chat Recovering Pointwise Values of Discontinuous Data within Spectral Accuracy 1985 David Gottlieb
Eitan Tadmor
+ Gibbs phenomenon for fractional Fourier series 2011 Hongqing Zhu
Meiyu Ding
Yin Li
+ On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function 1992 David Gottlieb
Chi‐Wang Shu
Alex Solomonoff
Hervé Vandeven
+ The Gibbs–Wilbraham phenomenon in the approximation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e870" altimg="si5.svg"><mml:mrow><mml:mo>|</mml:mo><mml:mi>x</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:math> by using Lagrange interpolation on the Chebyshev–Lobatto nodal systems 2022 E. Berriochoa
A. Cachafeiro
J. GarcĂ­a-Amor
HĂ©ctor GarcĂ­a RĂĄbade
+ ON THE GIBBS PHENOMENON FOR THE SHANNON SAMPLING SERIES IN WAVELET SUBSPACES AND A WAY TO GO AROUND 1998 Hong-Tae Shim
+ On the Gibbs Phenomenon of Fourier Series of a Classical Function 2008 ■ Xiang
Xue
Yan
He
Qian
+ A Study of The Gibbs Phenomenon in Fourier Series and Wavelets 2008 Kourosh Raeen
+ PDF Chat On the Gibbs phenomenon. IV. Recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function 1995 David Gottlieb
Chi‐Wang Shu
+ Approximation of Discontinuous Functions by Fourier Series 2008
+ Discontinuous functions and the sampling integral 1964 E. Della Torre
R.F. Hoskins
+ Asymptotic approximations elucidating the Gibbs phenomenon and Fejér averaging 2017 George Fikioris
Panagiotis Andrianesis
+ Stable discontinuous mapped bases: the Gibbs-Runge-Avoiding Stable Polynomial Approximation (GRASPA) method. 2021 Stefano De Marchi
Giacomo Elefante
Francesco Marchetti
+ PDF Chat Convergence Phenomenon with Fourier Series of &lt;math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'&gt; &lt;mrow&gt; &lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;g&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt; &lt;mrow&gt; &lt;mfrac&gt; &lt;mstyle mathvariant='bold' mathsize='normal'&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mstyle&gt; &lt;mn&gt;2&lt;/mn&gt; &lt;/mfrac&gt; &lt;/mrow&gt; &lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt; &lt;/math&gt; and Alike 2024 Alfred WĂŒnsche