Non-commutative Lorentz spaces associated with a semi-finite von Neumann algebra and applications

Type: Article

Publication Date: 1981-01-01

Citations: 22

DOI: https://doi.org/10.3792/pjaa.57.303

Abstract

0. Introduction.The purpose of the note is to announce a construction, basic properties, and certain applications of non-com- mutative Lorentz spaces associated with semi-finite von Neumann algebras.At first, non-increasing rearrangements for measurable operators affiliated with a semi-finite yon Neumann algebra are introduced and basic properties are obtained.Then, based on them, non-commutative Lorentz spaces are defined.Since we show that those Lorentz spaces are identified with real interpolation spaces between the semi-finite von Neumann algebra in question and its predual, the abstract Marcinkiewicz theorem is available to our Lorentz spaces.In the last

Locations

  • Proceedings of the Japan Academy Series A Mathematical Sciences - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Renormalizations of measurable operator ideal spaces affiliated to semi-finite von Neumann algebra 2019 А. М. Бикчентаев
+ PDF Chat Ring Isomorphisms of $$\ast$$-Subalgebras of Murray–von Neumann Factors 2021 Sh. A. Ayupov
Karimbergen Kudaybergenov
+ Non Commutative Arens Algebras and their Derivations 2007 Sergio Albeverio
Sh. A. Ayupov
Karimbergen Kudaybergenov
+ Non-commutative Arens algebras and their derivations 2007 Sergio Albeverio
Sh. A. Ayupov
Karimbergen Kudaybergenov
+ Ring isomorphisms of $\ast$-subalgebras of Murray-von Neumann factors 2020 Shavkat Ayupov
Karimbergen Kudaybergenov
+ PDF Chat Some results on noncommutative Hardy-Lorentz spaces 2015 Yazhou Han
Jingjing Shao
+ PDF Chat Some results on non-commutative Banach function spaces II (Infinite cases) 1993 Keiichi Watanabe
+ PDF Chat Geometric properties of noncommutative symmetric spaces of measurable operators and unitary matrix ideals 2017 Anna Kamińska
Małgorzata Czerwińska
+ Isometries on non-commutative (quantum) Lorentz spaces associated with semi-finite von Neumann algebras 2019 Pierre de Jager
Jurie Conradie
+ Isometries on non-commutative (quantum) Lorentz spaces associated with semi-finite von Neumann algebras 2019 Pierre de Jager
Jurie Conradie
+ Composition Operators on Lorentz-Karamata-Bochner Spaces 2015 Anuradha Gupta
Neha Bhatia
+ A Beurling-Chen-Hadwin-Shen Theorem for Noncommutative Hardy Spaces Associated with Semifinite von Neumann Algebras with Unitarily Invariant Norms 2018 Lauren Sager
Wenjing Liu
+ Notes on noncommutative LP and Orlicz spaces 2020 Stanisław Goldstein
Louis E. Labuschagne
+ PDF Chat $$L_1$$ L 1 -space for a positive operator affiliated with von Neumann algebra 2016 Andrei Novikov
+ Concerning the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra 2015 А. М. Бикчентаев
+ Ideal Spaces of Measurable Operators Affiliated to A Semifinite Von Neumann Algebra 2018 А. М. Бикчентаев
+ PDF Chat Orlicz-Lorentz Spaces and their Multiplication Operators 2015 René Erlín Castillo
Héctor Camilo Chaparro
Julio C. Ramos Fernández
+ Multiplication operators on Orlicz-Lorentz sequence spaces 2015 Birsen Sağır
Oğuz Oğur
Cenap Duyar
+ PDF Chat On Idempotent $\tau$-Measurable Operators Affiliated to a von Neumann Algebra 2016 А. М. Бикчентаев
+ An Extension of the Beurling-Chen-Hadwin-Shen Theorem for Noncommutative Hardy Spaces Associated with Finite von Neumann Algebras 2018 Haihui Fan
Don Hadwin
Wenjing Liu