Spectral functions for real symmetric Toeplitz matrices

Type: Article

Publication Date: 1998-10-01

Citations: 11

DOI: https://doi.org/10.1016/s0377-0427(98)00129-0

View

Locations

  • Journal of Computational and Applied Mathematics - View

Similar Works

Action Title Year Authors
+ Spectral properties of real Hankel matrices 2001 Miroslav Fiedler
+ The Spectral Theorem for Real Symmetric Matrices 1970 P. C. Shields
+ Spectral properties of finite Toeplitz matrices 2005 P. Delsarte
Y. Genin
+ Characterizations of complex symmetric Toeplitz operators 2025 Sudip Ranjan Bhuia
Deepak Pradhan
Jaydeb Sarkar
+ Complex Symmetric Toeplitz Operators 2021 Qinggang Bu
Yong Chen
Sen Zhu
+ Spectral and computational properties of band symmetric Toeplitz matrices 1983 Dario A. Bini
+ A note on the spectral for real Hankel matrices 2008 Xiang Wang
Linzhang Lu
Chuanxi Zhu
Qiang Niu
+ The Spectra of Toeplitz's Matrices 1954 Philip Hartman
Aurel Wintner
+ Spectral properties of slant Toeplitz operators 1996 Mark C. Ho
+ Toeplitz Operators and Spectral Function Theory 1989 Israel Gohberg
Aharon Atzmon
Joseph A. Ball
L. A. Coburn
Robert J. Douglas
Peter Fillmore
Ciprian Foiaş
Peter Fuhrmann
Seymour Goldberg
J.C. Helton
+ Function of matrices of symmetric Toeplitz matrices 2021 Joanna Bisch
+ The Spectral Theorem for Real Symmetric Matrices 1970 Paul C. Shields
+ Spectral Properties of Pseudo-Hermitian Matrices 2024 M. P. Pato
+ Spectral properties of Toeplitz-plus-Hankel matrices 1996 Dario Fasino
+ Matrix-valued Toeplitz operators 1967 I. I. Hirschman
+ Complex Symmetric Toeplitz Operators on Hilbert Spaces of Analytic Functions 2023 Ching-on Lo
Anthony Wai-keung Loh
+ A certain spectral property of real matrices with zero trace 1984 N. V. Kukharenko
+ Unbounded complex symmetric Toeplitz operators 2021 Kaikai Han
Maofa Wang
Qi Wu
+ A survey of the eigenstructure properties of finite Hermitian Toeplitz matrices 1987 Y. Genin
+ Fine Spectra of Tridiagonal Toeplitz Matrices 2019 Hüseyin Bilgiç
Muhammed Altun

Citing (21)

Action Title Year Authors
+ The Classical Moment Problem and Some Related Questions in Analysis 2020 Н. И. Ахиезер
+ The generalized Schur algorithm for the superfast solution of Toeplitz systems 1987 Gregory Ammar
William B. Gragg
+ PDF Chat Computing the Minimum Eigenvalue of a Symmetric Positive Definite Toeplitz Matrix 1986 George Cybenko
Charles Van Loan
+ A new algorithm for solving Toeplitz systems of equations 1987 Frank de Hoog
+ PDF Chat Analysis of third-order methods for secular equations 1998 A. Melman
+ Stability of Methods for Solving Toeplitz Systems of Equations 1985 James R. Bunch
+ On the eigenstructure of Toeplitz matrices 1984 George Cybenko
+ Rank-one modification of the symmetric eigenproblem 1978 James R. Bunch
Christopher P. Nielsen
Danny C. Sorensen
+ A Constrained Eigenvalue Problem 1991 Walter Gander
Gene H. Golub
U. von Matt
+ An exact recursion for the composite nearest-neighbor degeneracy for a 2×<i>N</i> lattice space 1984 R. B. McQuistan
J.L. Hock
+ PDF Chat A unifying convergence analysis of second-order methods for secular equations 1997 A. Melman
+ Spectral Evolution of a One-Parameter Extension of a Real Symmetric Toeplitz Matrix 1990 William F. Trench
+ Numerical experience with a superfast real Toeplitz solver 1989 Gregory Ammar
William B. Gragg
+ The Minimum Eigenvalue of a Symmetric Positive-Definite Toeplitz Matrix and Rational Hermitian Interpolation 1997 Wolfgang Mackens
Heinrich Voß
+ Eigenvectors of certain matrices 1973 Alan Andrew
+ PDF Chat Some Modified Matrix Eigenvalue Problems 1973 Gene H. Golub
+ PDF Chat A Parallel Divide and Conquer Algorithm for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem 1992 Carlos F. Borges
William B. Gragg
+ Hankel and toeplitz matrices and forms 1983 Gian‐Carlo Rota
+ PDF Chat Rational Approximation and its Applications in Mathematics and Physics 1987 Jacek Gilewicz
M. Pindor
Wojciech Siemaszko
Druckhaus Beltz
+ THE CLASSICAL MOMENT PROBLEM AND SOME RELATED QUESTIONS IN ANALYSIS 1966 H. Mulholland
+ PDF Chat A constrained eigenvalue problem 1989 Walter Gander
Gene H. Golub
U. von Matt