Type: Article
Publication Date: 2002-01-21
Citations: 124
DOI: https://doi.org/10.1088/0305-4470/35/4/305
Variance and Fisher information are ingredients of the Cramér-Rao inequality. We regard Fisher information as a Riemannian metric on a quantum statistical manifold and choose monotonicity under coarse graining as the fundamental property of variance and Fisher information. In this approach we show that there is a kind of dual one-to-one correspondence between the candidates of the two concepts. We emphasize that Fisher information is obtained from relative entropies as contrast functions on the state space and argue that the scalar curvature might be interpreted as an uncertainty density on a statistical manifold.