CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS WITH AND WITHOUT HARMONIC POTENTIAL

Type: Article

Publication Date: 2002-10-01

Citations: 75

DOI: https://doi.org/10.1142/s0218202502002215

Abstract

We use a change of variables that turns the critical nonlinear Schrödinger equation into the critical nonlinear Schrödinger equation with isotropic harmonic potential, in any space dimension. This change of variables is isometric on L 2 , and bijective on some time intervals. Using the known results for the critical nonlinear Schrödinger equation, this provides information for the properties of Bose–Einstein condensate in space dimension one and two. We discuss in particular the wave collapse phenomenon.

Locations

  • Mathematical Models and Methods in Applied Sciences - View
  • arXiv (Cornell University) - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ Critical nonlinear Schroedinger equations with and without harmonic potential 2001 Rémi Carles
+ Critical nonlinear Schroedinger equations with and without harmonic potential 2001 Rémi Carles
+ PDF Chat On the wave operators for the critical nonlinear Schrödinger equation 2008 Rémi Carles
Tohru Ozawa
+ The focusing energy-critical nonlinear Schr\ 2008 Rowan Killip
Monica Vişan
+ PDF Chat The energy-critical nonlinear Schrödinger equation in ℝ³ 2007 J. Colliander
M. Keel
G. Staffilani
Hernán Ángel Takaoka
T. Tao
+ The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher 2010 Rowan Killip
Monica Vişan
+ PDF Chat Critical nonlinear Schrödinger equations in higher space dimensions 2018 Nakao Hayashi
Chunhua Li
Pavel I. Naumkin
+ On the wave operators for the critical nonlinear Schrodinger equation 2007 Rémi Carles
Tohru Ozawa
+ On the $L^{2}$-critical nonlinear Schrodinger equation with an inhomogeneous damping term 2017 Mohamad Darwich
+ On the energy critical focusing non-linear wave equation 2007 Carlos E. Kenig
Frank Merle
+ Collapse in the nonlinear Schrödinger equation of critical dimension {σ=1, D=2} 2002 Yu. N. Ovchinnikov
Israel Michael Sigal
+ PDF Chat Blow-up for the energy-critical nonlinear wave equation and Schrödinger equation with inverse-square potential 2013 Jing Lu
+ The defocusing energy-critical nonlinear Schrodinger equation in dimensions five and 2006 Los Angeles
+ Inhomogeneous critical nonlinear Schrödinger equations with a harmonic potential 2010 Daomin Cao
Pigong Han
+ Remarks on the blow-up rate for critical nonlinear Schrödinger equation with harmonic potential 2008 Jian Zhang
Xiaoguang Li
Yonghong Wu
+ PDF Chat On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D 2001 Galina Perelman
+ On the blow up phenomenon of the critical nonlinear Schrödinger equation 2005 Sahbi Keraani
+ The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher 2008 Rowan Killip
Monica Vişan
+ PDF Chat Remarques sur l'équation de Schrödinger non linéaire avec potentiel harmonique 2002 Rémi Carles
+ PDF Chat Nonlinear Schrödinger Equations with Repulsive Harmonic Potential and Applications 2003 Rémi Carles