Small class numbers and extreme values of 𝐿-functions of quadratic fields

Type: Article

Publication Date: 1977-01-01

Citations: 14

DOI: https://doi.org/10.1090/s0025-5718-1977-0439802-x

Abstract

The table of class numbers <italic>h</italic> of imaginary quadratic fields described in [1] was placed on magnetic tape. This tape was then processed to find the occurrences of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="h less-than-or-slanted-equals 125"> <mml:semantics> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mn>125</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">h \leqslant 125</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and to find the successive extreme values of the Dirichlet <italic>L</italic>-functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L left-parenthesis 1 comma chi Subscript negative upper D Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>χ<!-- χ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">L(1,{\chi _{ - D}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="chi Subscript negative upper D"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>χ<!-- χ --></mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−<!-- − --></mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{\chi _{ - D}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the Kronecker symbol of the field <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper Q left-parenthesis StartRoot negative upper D EndRoot right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>Q</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msqrt> <mml:mo>−<!-- − --></mml:mo> <mml:mi>D</mml:mi> </mml:msqrt> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">Q(\sqrt { - D} )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of discriminant - <italic>D</italic>. A comparison was made between the observed extrema and the bounds obtained for the <italic>L</italic>-functions by Littlewood [5] assuming Riemann hypotheses.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ Large values of quadratic Dirichlet 𝐿-functions over monic irreducible polynomial in 𝔽_{𝕢}[𝕥] 2024 Pranendu Darbar
Gopal Maiti
+ The distribution of class numbers in a special family of real quadratic fields 2017 Alexander Dahl
Youness Lamzouri
+ PDF Chat Computations of class numbers of real quadratic fields 1998 Anitha Srinivasan
+ PDF Chat Zeros of 2-adic 𝐿-functions and congruences for class numbers and fundamental units 1999 Daniel Shanks
Patrick J. Sime
Lawrence C. Washington
+ PDF Chat A computable formula for the class number of the imaginary quadratic field &lt;inline-formula&gt;&lt;tex-math id="M1"&gt;$ \mathbb Q(\sqrt{-p}), \ p = 4n-1 $&lt;/tex-math&gt;&lt;/inline-formula&gt; 2021 Jorge Garcia Villeda
+ PDF Chat Class groups of the quadratic fields found by F. Diaz y Diaz 1976 Daniel Shanks
+ Functional distribution of 𝐿(𝑠,𝜒_{𝑑}) with real characters and denseness of quadratic class numbers 2006 Hidehiko Mishou
Hirofumi Nagoshi
+ PDF Chat 𝐿-functions and class numbers of imaginary quadratic fields and of quadratic extensions of an imaginary quadratic field 1992 Stéphane Louboutin
+ On the class number of certain imaginary quadratic fields 2001 J. D. Cohn
+ An approach for computing generators of class fields of imaginary quadratic number fields using the Schwarzian derivative 2020 Jay Jorgenson
Lejla Smajlović
Holger Then
+ PDF Chat On the values at negative half-integers of the Dedekind zeta function of a real quadratic field 1989 Min King Eie
+ PDF Chat Quadratic fields with special class groups 1992 James J. Solderitsch
+ PDF Chat Small zeros of quadratic forms 1985 Wolfgang M. Schmidt
+ PDF Chat Computation of real quadratic fields with class number one 1988 A. J. Stephens
Hywel C Williams
+ PDF Chat On real quadratic fields of class number two 1992 R. A. Mollin
Hywel C Williams
+ PDF Chat 𝑝-adic computation of real quadratic class numbers 1990 Johannes Buchmann
Jonathan W. Sands
Hywel C Williams
+ PDF Chat A family of real 2ⁿ-tic fields 1994 Y. Shen
Lawrence C. Washington
+ PDF Chat On small values of indefinite diagonal quadratic forms at integer points in at least five variables 2022 Paul Buterus
Friedrich Götze
Thomas Hille
+ Class Numbers of Quadratic Fields 2001 Paulo Ribenboim
+ PDF Chat Integer sequences having prescribed quadratic character 1970 D. H. Lehmer
Emma Lehmer
Daniel Shanks