Type: Article
Publication Date: 2013-01-01
Citations: 6
DOI: https://doi.org/10.1155/2013/216236
Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:msub><mml:mi>X</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math>be a sequence of random variables satisfying the Rosenthal-type maximal inequality. Complete convergence is studied for linear statistics that are weighted sums of identically distributed random variables under a suitable moment condition. As an application, the Marcinkiewicz-Zygmund-type strong law of large numbers is obtained. Our result generalizes the corresponding one of Zhou et al. (2011) and improves the corresponding one of Wang et al. (2011, 2012).