On Strong Convergence for Weighted Sums of a Class of Random Variables

Type: Article

Publication Date: 2013-01-01

Citations: 6

DOI: https://doi.org/10.1155/2013/216236

Abstract

Let<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mo stretchy="false">{</mml:mo><mml:msub><mml:mi>X</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mi>n</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn><mml:mo stretchy="false">}</mml:mo></mml:mrow></mml:math>be a sequence of random variables satisfying the Rosenthal-type maximal inequality. Complete convergence is studied for linear statistics that are weighted sums of identically distributed random variables under a suitable moment condition. As an application, the Marcinkiewicz-Zygmund-type strong law of large numbers is obtained. Our result generalizes the corresponding one of Zhou et al. (2011) and improves the corresponding one of Wang et al. (2011, 2012).

Locations

  • Project Euclid (Cornell University) - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View
  • Abstract and Applied Analysis - View - PDF

Similar Works

Action Title Year Authors
+ General results of complete convergence and complete moment convergence for weighted sums of some class of random variables 2015 Xuejun Wang
Shuhe Hu
Andrei Volodin
+ Convergence of the Weighted Sums of NA Random Variables 2009 Qiu De-hua
+ PDF Chat On the complete convergence for weighted sums of a class of random variables 2016 Jinghuan Zhao
Yan Sun
Yu Miao
+ PDF Chat Sufficient and Necessary Conditions of Complete Convergence for Weighted Sums of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mover accent="true"><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mo>~</mml:mo></mml:mover></mml:mrow></mml:math>-Mixing Random Variables 2014 Chongfeng Lan
+ PDF Chat Strong laws for weighted sums of random variables satisfying generalized Rosenthal type inequalities 2020 Yanchun Yi
Pingyan Chen
Soo Hak Sung
+ PDF Chat Strong laws for weighted sums of some dependent random variables and applications 2023 Menghuan Du
Yu Miao
+ A Refinement of the Kolmogorov-Marcinkiewicz-Zygmund Strong Law of Large Numbers 2010 Deli Li
Yongcheng Qi
Andrew Rosalsky
+ PDF Chat Complete convergence for weighted sums of a class of random variables 2014 Xin Deng
Meimei Ge
Xuejun Wang
Yanfang Liu
Yu Zhou
+ Equivalent conditions of complete moment convergence of weighted sums for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mrow><mml:mi>ρ</mml:mi></mml:mrow><mml:mrow><mml:mo>∗</mml:mo></mml:mrow></mml:msup></mml:math>-mixing sequence of random variables 2012 Mingle Guo
Dongjin Zhu
+ PDF Chat On Complete Convergence for Weighted Sums ofρ*-Mixing Random Variables 2013 Aiting Shen
Xinghui Wang
Huayan Zhu
+ The Marcinkiewicz--Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences 2021 Vu Thi Ngoc Anh
Nguyen Thi Thanh Hien
Lê Vǎn Thành
Võ Thị Hông Vân
+ The Marcinkiewicz--Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences 2021 Vu Thi Ngoc Anh
Nguyen Thi Thanh Hien
Lê Vǎn Thành
Võ Thị Hông Vân
+ Weak laws of large numbers for maximal weighted sums of random variables 2019 Fakhreddine Boukhari
+ PDF Chat On the Strong Laws for Weighted Sums of -Mixing Random Variables 2011 Xingcai Zhou
Changchun Tan
Jin‐Guan Lin
+ PDF Chat ON COMPLETE CONVERGENCE AND COMPLETE MOMENT CONVERGENCE FOR A CLASS OF RANDOM VARIABLES 2017 Xuejun Wang
Yi Wu
+ PDF Chat STRONG LAWS FOR WEIGHTED SUMS OF I.I.D. RANDOM VARIABLES 2006 Guanghui Cai
+ PDF Chat Strong convergence results for weighted sums of ρ ˜ -mixing random variables 2013 Aiting Shen
Ranchao Wu
+ PDF Chat The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences 2019 V. T. N. Anh
Nguyen Thi Thanh Hien
Lê Vǎn Thành
Võ Thị Hông Vân
+ Strong laws for weighted sums of i.i.d. random variables 2006 Guanghui Cai
+ Complete convergence for weighted sums of random variables satisfying generalized Rosenthal-type inequalities* 2024 Chang Liu
Yu Miao