LOCAL EXISTENCE FOR SEMILINEAR WAVE EQUATIONS AND APPLICATIONS TO YANG–MILLS EQUATIONS

Type: Article

Publication Date: 2005-03-01

Citations: 2

DOI: https://doi.org/10.1142/s0219891605000373

Locations

  • Journal of Hyperbolic Differential Equations - View

Similar Works

Action Title Year Authors
+ Global existence for quasilinear wave equations close to Schwarzschild 2016 Hans Lindblad
Mihai Tohaneanu
+ Global existence for quasilinear wave equations close to Schwarzschild 2016 Hans Lindblad
Mihai Tohaneanu
+ PDF Chat Global existence for quasilinear wave equations close to Schwarzschild 2018 Hans Lindblad
Mihai Tohaneanu
+ Almost global existence for semilinear wave equations with mixed nonlinearities in four space dimensions 2017 Chengbo Wang
Hao Zhou
+ Local existence and estimations for a semilinear wave equation in two dimension space 2004 Amel Atallah Baraket
+ PDF Chat Semi-linear wave equations 1992 Michaël Struwe
+ The semilinear wave equation on asymptotically euclidean manifolds 2008 Jean‐François Bony
Dietrich Häfner
+ Semilinear wave equations 1992 Michaël Struwe
+ PDF Chat Semilinear wave equations 2000 Jalal Shatah
Michaël Struwe
+ PDF Chat Global existence problems for non-linear critical evolution equations with small initial data and semi-classical analysis 2018 Annalaura Stingo
+ PDF Chat Global Existence for Some 4-D Quasilinear Wave Equations with Low Regularity 2017 Meng Yun Liu
Chengbo Wang
+ PDF Chat On the optimal local regularity for the Yang-Mills equations in ℝ⁴⁺¹ 1999 Sergiù Klainerman
Daniel Tataru
+ PDF Chat Stability of a coupled wave-Klein–Gordon system with non-compactly supported initial data 2024 Qian Zhang
+ Global existence for some 4-D quasilinear wave equations with low regularity 2017 Mengyun Liu
Chengbo Wang
+ PDF Chat A minicourse on global existence and blowup of classical solutions to multidimensional quasilinear wave equations 2002 Serge Alinhac
+ Local energy decay for linear wave equations with non‐compactly supported initial data 2004 Ryo Ikehata
+ Global Existence Theorem for Semilinear Wave Equations with Non-compact Data in Two Space Dimensions 1993 Kimitoshi Tsutaya
+ Global Regularity and Scattering for General Non-Linear Wave Equations II. (4+1) Dimensional Yang--Mills Equations in the Lorentz Gauge 2004 Jacob Sterbenz
+ PDF Chat The Semilinear Wave Equation on Asymptotically Euclidean Manifolds 2009 Jean-François Bony
Dietrich Häfner
+ Stability of a coupled wave-Klein-Gordon system with non-compactly supported initial data 2023 Qian Zhang