Spanning Trees of the Complete Bipartite Graph

Type: Book-Chapter

Publication Date: 1990-01-01

Citations: 9

DOI: https://doi.org/10.1007/978-3-642-46908-4_38

Similar Works

Action Title Year Authors
+ Number of Spanning Trees in a Complete Bipartite Graph 2008 Hao Peng-wei
+ On the number of spanning trees of Kn and Km, n 1990 Moh'd Z. Abu-Sbeih
+ PDF Chat Counting spanning trees in a complete bipartite graph which contain a given spanning forest 2022 Fengming Dong
Jun Ge
+ Counting of spanning trees of a complete graph 2018 Anderson L. P. Porto
Vagner R. de Bessa
Mattheus Aguiar
Mariana Martins Vieira
+ PDF Chat On the Number of Spanning Trees of Graphs 2014 Ş. Burcu Bozkurt
Durmuş Bozkurt
+ A Formula for the Number of Spanning Trees of K_(n~m)[G] 2001 Zhenjie Huang
+ PDF Chat The number of spanning trees of a graph 2013 Kinkar Ch. Das
A. Sinan Çevik
İsmail Naci Cangül
+ The number of spanning trees in $$K_n$$-complement of a bipartite graph 2024 Helin Gong
Yu Gong
Jun Ge
+ Construction and enumeration of spanning trees in a complete Bipartite graph Kp of odd order 2010 Chou Wan-xi
+ PDF Chat A note on the number of spanning trees of a graph 1966 Iva Rohlíčková
+ The number of spanning trees 2008 Jirří Matoušek
Jaroslav Nešetřil
+ The number of spanning trees of the Bruhat graph 2021 Richard Ehrenborg
+ Spanning tree with lower bound on the degrees 2017 Zoltán Király
+ Enumeration of spanning trees in certain graphs 1970 Peter V. O'Neil
+ The number of spanning trees of a complete multipartite graph 1999 Robert E. Lewis
+ Number of spanning trees containing a given forest 2022 Peter J‎. Cameron
M. Kagan
+ Enumeration for spanning forests of complete bipartite graphs. 2004 Yinglie Jin
Chunlin Liu
+ The number of spanning forests of a graph 2005 Yasuo Teranishi
+ A Bound on the Number of Spanning Trees in Bipartite Graphs 2016 Cheng Wai Koo
+ The Number of Spanning Trees in the Square of a Cycle 1985 Gerd Baron
Helmut Prodinger
Robert F. Tichy
F Boesch
J. F. Wang

Works Cited by This (1)

Action Title Year Authors
+ The number of trees with nodes of alternate parity 1962 H. I. Scoins