The prime k-tuplets in arithmetic progressions

Type: Article

Publication Date: 1993-06-01

Citations: 9

DOI: https://doi.org/10.21099/tkbjm/1496162128

Abstract

In this paper we discuss a problem on the distribution of prime multiplets in arithmetic progressions.Before mentioning our problem we need to introduce the following notation. (In connection with our problem, see also the introduc- tion of Balog's tract [1].)For an integer $k\geqq 2$ , we let $a_{j}(0\leqq j\leqq k-1)$ be non-zero integers, and let $b_{j}(0\leqq]\leqq k-1)$ be integers, and put $a=(a_{0}, a_{1}, \cdots, a_{k-1}, b_{0}),$ $b=(b_{1}, \cdots, b_{k-1})$ , (Later, we will fix all the coordinates of $a$ , and treat an average over $b$ .This is why the unsymmetry of the definitions of $a$ and $b$ occurs.),$R(b)=R(a, b)=\prod_{j=0}^{k-1}|a_{j}|\prod_{0\leq i<J\leq k-1}|a_{\iota}b_{j}-a_{j}b_{t}|$ , $N(x;b)=N(x;a, b)=\{n;1\leqq a_{j}n+b_{j}\leqq xforall0\leqq j\leqq k-1\}$ ,and define $\Psi(x;b, a, q)=\Psi(x;a, b;a, q)=\sum_{Jn\in Ntxb_{q^{)})}=0 ,n\cong a(m\dot{o}d}$ $k1\Pi^{-}\Lambda(a_{j}n+b_{j})$ , where $\Lambda$ denotes the von Mangoldt function.And, we let, for any prime $p$ , $\rho(p)=\rho(p;a, b)$ be the number of solutions of the congruence $\prod_{j=0}^{k-1}(a_{j}n+b_{j})\equiv 0$ $(mod p)$ , and set, if $R(b)\neq 0,$ $\rho(p)<p$ for all prime $p$ , and $(a_{j}a+b_{j}, q)=1$ for all $ 0\leqq j\leqq$ $k-1$ , $\sigma(b;a, q)=\sigma(a, b;a, q)=\frac{1}{q}\prod_{p1q}(1-\frac{\rho(p)}{p})^{-1}\prod_{p}(1-\frac{\rho(p)}{p})(1-\frac{1}{p})^{-k}$ and $\sigma(b;a, q)=0$ otherwise.Further, we put $Z(x)=Z(x;a)=\{b;|N(x;b)|\neq 0\}$ , where $|N(x;b)|$ denote the length of the interval $N(x;b)$ .

Locations

  • Tsukuba Journal of Mathematics - View - PDF
  • Terrestrial Environment Research Center (University of Tsukuba) - View - PDF

Similar Works

Action Title Year Authors
+ Divisor problem in arithmetic progressions modulo a prime power 2016 Kui Liu
Igor E. Shparlinski
Tianping Zhang
+ Prime numbers in arithmetic progressions 1972 Saburô Uchiyama
+ Prime Numbers in Arithmetic Progressions 1993 Anatolij A. Karatsuba
Melvyn B. Nathanson
+ Prime numbers in arithmetic progressions 1991 Helmut Koch
+ $$\kappa $$ κ -Factor in arithmetic progressions 2015 Olivier Bordellès
+ PDF Chat Numbers with a large prime factor 1995 Roger C. Baker
G. Harman
+ PDF Chat The sum-of-digits function of polynomial sequences 2011 Michael Drmota
Christian Mauduit
Joël Rivat
+ NUMBER OF PRIME FACTORS OVER ARITHMETIC PROGRESSIONS 2019 Xianchang Meng
+ PDF Chat Prime numbers in arithmetic progression 2012 Jean-Marie De Koninck
Florian Luca
+ Prime Numbers In Arithmetic Progression 1970 Robert Charles Taylor
+ A note on the distribution of primes in arithmetic progressions 1972 Thomas Moore
+ On the density of primes with a set of quadratic residues or non-residues in given arithmetic progression 2013 Steve Wright
+ On the density of primes with a set of quadratic residues or non-residues in given arithmetic progression 2013 Steve Wright
+ Distribution of Prime Numbers 2024 Peter Shiu
+ Distribution of Prime Numbers 1972 A. E. Ingham
+ On the Density of Integers of the Form 2^k+ p in Arithmetic Progressions 2010 Xue
Gong
Sun
+ Sumsets in primes containing almost all even positive integers 2012 Ping Xi
+ Balancing non-Wieferich primes in arithmetic progressions 2019 Utkal Keshari Dutta
Bijan Kumar Patel
Prasanta Kumar Ray
+ Numbers of the form $k+f(k)$ 2023 Mikhail R. Gabdullin
Vitalii V. Iudelevich
Florian Luca
+ The Goldbach Problem with Primes in Arithmetic Progressions 1997 Ming-Chit Liu
Tao Zhan