Quantum anomalous Hall effect in magnetic topological insulators

Type: Article

Publication Date: 2016-01-01

Citations: 2

DOI: https://doi.org/10.1109/memsys.2016.7421541

Download PDF

Abstract

Summary form only given. The quantum Hall effect, a quantum phenomenon that appears in macroscopic length scale, is one of the most important topics in condensed matter physics, is. It has long been expected that the quantum Hall effect may occur without Landau levels so that no external magnetic field nor high sample mobility is required for its studies and applications. Such a quantum Hall effect free of Landau levels can be realized in a topological insulator with its time-reversal symmetry broken by ferromagnetism as the quantized version of the anomalous Hall effect, i.e. the quantum anomalous Hall effect (see Figure 1 for the schematics of the quantum Hall effect and quantum anomalous Hall effect). Combing molecular beam epitaxy, scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we prepared high quality thin films of magnetically doped (Bi, Sb) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Te <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> topological insulator with well-controlled composition, thickness and chemical potential and systematically studied their transport properties. In 5 quintuple layer thick Cr-doped (Bi, Sb) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Te <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> films we experimentally observed the quantization of the Hall resistance at h/e <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at zero field, accompanied by a considerable reduction in the dissipation of electron transport. Under a strong magnetic field, the longitudinal resistance vanishes, whereas the Hall resistance remains at the quantized value (see Figure 2). The observations unambiguously demonstrate the occurrence of the quantum anomalous Hall effect. The temperature, thickness and magnetic-doping-concentration dependences of the quantum anomalous Hall effect were systematically studied, which clarifies the roles of the band structure, electron localization and magnetic order in the effect and provides clues for obtaining the effect at a higher temperature. The experimental progresses in the quantum anomalous Hall effect pave the ways for applications of dissipationless quantum Hall edge states in low-energy-consuming devices and for realizations of other novel quantum phenomena such as chiral topological superconductivity and axion electrodynamics.

Locations

  • arXiv (Cornell University) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Quantum Anomalous Hall Effect in Magnetic Topological Insulators 2021 Yayu Wang
Ke He
Qikun Xue
+ PDF Chat Quantum anomalous Hall effect in time-reversal-symmetry breaking topological insulators 2016 Cuiā€Zu Chang
Mingda Li
+ Colloquium: Quantum anomalous Hall effect 2022 Cuiā€Zu Chang
Chaoā€Xing Liu
A. H. MacDonald
+ PDF Chat Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator 2013 Cuiā€Zu Chang
Jinsong Zhang
Xiao Feng
Jie Shen
Zuocheng Zhang
Minghua Guo
Kang Li
Yunbo Ou
P. Wei
Li-Li Wang
+ PDF Chat <i>Colloquium</i> : Quantum anomalous Hall effect 2023 Cuiā€Zu Chang
Chaoā€Xing Liu
A. H. MacDonald
+ PDF Chat Quantum anomalous Hall effect by coupling heavy atomic layers with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CrI</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> 2019 Majeed Ur Rehman
Xinlong Dong
Tao Hou
Zeyu Li
Shifei Qi
Zhenhua Qiao
+ Thickness-Driven Quantum Anomalous Hall Phase Transition in Magnetic Topological Insulator Thin Films 2021 Yuchen Ji
Zheng Liu
Peng Zhang
Lun Li
Shifei Qi
Peng Chen
Yong Zhang
Qi Yao
Zhongkai Liu
Kang L. Wang
+ PDF Chat Pursuing the high-temperature quantum anomalous Hall effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>MnBi</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:msub><mml:mi>Sb</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> heterostructures 2020 Shifei Qi
Ruiling Gao
Maozhi Chang
Yulei Han
Zhenhua Qiao
+ PDF Chat Quantum anomalous Hall effect 2013 Ke He
Yayu Wang
Qiā€Kun Xue
+ PDF Chat Quantum oscillations in a topological insulator<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Bi</mml:mtext></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>āˆ’</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mtext>Sb</mml:mtext></mml:mrow><mml:mi>x</mml:mi></mml:msub></mml:mrow></mml:math> 2009 A. A. Taskin
Yoichi Ando
+ Magnetic-field-induced topological phase transition in Fe-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mi>Bi</mml:mi><mml:mo>,</mml:mo><mml:mi>Sb</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">S</mml:mi><mml:msub><mml:mi mathvariant="normal">e</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> heterostructures 2020 Yosuke Satake
Junichi Shiogai
Grzegorz P. Mazur
Shinā€ichi Kimura
Satoshi Awaji
Kohei Fujiwara
Tsutomu Nojima
K. Nomura
S. Souma
T. Sato
+ PDF Chat Phonon and defect mediated quantum anomalous Hall insulator to metal transition in magnetically doped topological insulators 2024 Akiyoshi Park
Adrian Llanos
Chun-I Lu
Y. J. Chen
Sebastien N. Abadi
Chien-Chang Chen
M.L. Teague
Lixuan Tai
Peng Zhang
Kang L. Wang
+ Mapping the global phase diagram of quantum anomalous Hall effect 2015 Xufeng Kou
Lei Pan
Jing Wang
Yabin Fan
Eun Sang Choi
Weiā€Li Lee
Tianxiao Nie
Koichi Murata
Qiming Shao
Shoucheng Zhang
+ PDF Chat Quantum anomalous Hall effect for metrology 2025 Jian Huang
Jessica L. Boland
Kajetan M. Fijalkowski
C. Gould
T. Hesjedal
Olga Kazakova
Susmit Kumar
H. Scherer
+ PDF Chat Metal-to-insulator switching in quantum anomalous Hall states 2015 Xufeng Kou
Lei Pan
Jing Wang
Yabin Fan
Eun Sang Choi
Weiā€Li Lee
Tianxiao Nie
Koichi Murata
Qiming Shao
Shou-Cheng Zhang
+ PDF Chat Quantum anomalous Hall effect in ferromagnetic transition metal halides 2017 Chengxi Huang
Jian Zhou
Haiping Wu
Kaiming Deng
P. Jena
Erjun Kan
+ PDF Chat Thickness-Driven Quantum Anomalous Hall Phase Transition in Magnetic Topological Insulator Thin Films 2022 Yuchen Ji
Zheng Liu
Peng Zhang
Lun Li
Shifei Qi
Peng Chen
Yong Zhang
Qi Yao
Zhongkai Liu
Kang L. Wang
+ PDF Chat Macroscopic Quantum Tunneling of a Topological Ferromagnet 2023 Kajetan M. Fijalkowski
Nan Liu
Pankaj Mandal
S. Schreyeck
Karl BrĆ¼nner
C. Gould
L. W. Molenkamp
+ PDF Chat Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy 2018 Gaoyuan Jiang
Yang Feng
Weixiong Wu
Shaorui Li
Yunhe Bai
Yaoxin Li
Qinghua Zhang
Lin Gu
Xiao Feng
Ding Zhang
+ PDF Chat Antiferromagnetic topological insulating state in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Tb</mml:mi><mml:mrow><mml:mn>0.02</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>Bi</mml:mi><mml:mrow><mml:mn>1.08</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>Sb</mml:mi><mml:mrow><mml:mn>0.9</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>Te</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="normal">S</mml:mi></mml:mrow></mml:math> single crystals 2023 Lei Guo
Weiyao Zhao
Qile Li
Meng Xu
Lei Chen
Abdulhakim Bake
Thiā€Haiā€Yen Vu
Yahua He
Yong Fang
David Cortie