Unconditional global well-posedness in energy space for the Maxwell-Klein-Gordon system in temporal gauge

Type: Article

Publication Date: 2015-11-01

Citations: 1

DOI: https://doi.org/10.57262/ade/1439901069

Abstract

The Maxwell-Klein-Gordon system in temporal gauge is unconditionally globally well-posed in energy space, especially uniqueness holds in the natural solution space. This improves earlier results where uniqueness was only shown in a suitable subspace. It is also locally well-posed for large data below energy space.

Locations

  • arXiv (Cornell University) - View - PDF
  • Advances in Differential Equations - View

Similar Works

Action Title Year Authors
+ Unconditional global well-posedness in energy space for the Maxwell-Klein-Gordon system in temporal gauge 2015 Hartmut Pecher
+ Unconditional global well-posedness in energy space for the Maxwell-Klein-Gordon system in temporal gauge 2015 Hartmut Pecher
+ Unconditional well-posedness below energy norm for the Maxwell-Klein-Gordon system 2017 Hartmut Pecher
+ PDF Chat Global well-posedness and scattering of the (4+1)-dimensional Maxwell-Klein-Gordon equation 2016 Sung‐Jin Oh
Daniel Tataru
+ Unconditional well-posedness below energy norm for the Maxwell-Klein-Gordon system 2017 Hartmut Pecher
+ Local well-posedness of the Yang–Mills equation in the temporal gauge below the energy norm 2003 Terence Tao
+ Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge 2010 Sigmund Selberg
Achenef Tesfahun
+ Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge 2010 Sigmund Selberg
Achenef Tesfahun
+ Local well-posedness for the (n+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge 2016 Hartmut Pecher
+ Local well-posedness for the (n+1)-dimensional Maxwell-Klein-Gordon equations in temporal gauge 2016 Hartmut Pecher
+ Global existence of Maxwell–Klein–Gordon fields in (2+1)-dimensional space-time 1980 Vincent Moncrief
+ PDF Chat The global well-posedness for Klein-Gordon-Hartree equation in modulation spaces 2024 Divyang G. Bhimani
+ PDF Chat Finite-Energy Global Well-Posedness of the Maxwell–Klein–Gordon System in Lorenz Gauge 2010 Sigmund Selberg
Achenef Tesfahun
+ PDF Chat Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2020 Hartmut Pecher
+ Unconditional well-posedness for the Dirac - Klein - Gordon system in two space dimensions 2010 Hartmut Pecher
+ Unconditional uniqueness in the charge class for the Dirac-Klein-Gordon equations in two space dimensions 2011 Sigmund Selberg
Achenef Tesfahun
+ Unconditional uniqueness in the charge class for the Dirac-Klein-Gordon equations in two space dimensions 2011 Sigmund Selberg
Achenef Tesfahun
+ Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2019 Hartmut Pecher
+ Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2019 Hartmut Pecher
+ Local well-posedness of the Maxwell–Chern–Simons–Higgs system in the temporal gauge 2014 Yuan Jian-jun