On the size of lemniscates of polynomials in one and several variables

Type: Article

Publication Date: 1996-01-01

Citations: 18

DOI: https://doi.org/10.1090/s0002-9939-96-03293-5

Abstract

In the convergence theory of rational interpolation and Padé approximation, it is essential to estimate the size of the lemniscatic set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E colon equals left-brace z colon StartAbsoluteValue z EndAbsoluteValue less-than-or-equal-to r"> <mml:semantics> <mml:mrow> <mml:mi>E</mml:mi> <mml:mo>:=</mml:mo> <mml:mstyle scriptlevel="0"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo maxsize="1.2em" minsize="1.2em">{</mml:mo> </mml:mrow> </mml:mstyle> <mml:mi>z</mml:mi> <mml:mspace width="thinmathspace"/> <mml:mo>:</mml:mo> <mml:mspace width="thinmathspace"/> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:mi>r</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">E:=\big \{z\,:\, |z|\le r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper P left-parenthesis z right-parenthesis EndAbsoluteValue less-than-or-equal-to epsilon Superscript n Baseline right-brace"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>P</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:msup> <mml:mi>ϵ</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mstyle scriptlevel="0"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo maxsize="1.2em" minsize="1.2em">}</mml:mo> </mml:mrow> </mml:mstyle> </mml:mrow> <mml:annotation encoding="application/x-tex">|P(z)|\le \epsilon ^{n}\big \}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for a polynomial <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of degree <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="less-than-or-equal-to n"> <mml:semantics> <mml:mrow> <mml:mo>≤</mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\le n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Usually, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is taken to be monic, and either Cartan’s Lemma or potential theory is used to estimate the size of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in terms of Hausdorff contents, planar Lebesgue measure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m 2"> <mml:semantics> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">m_{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, or logarithmic capacity cap. Here we normalize <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-vertical-bar upper P double-vertical-bar Subscript upper L Sub Subscript normal infinity Subscript left-parenthesis StartAbsoluteValue z EndAbsoluteValue less-than-or-equal-to r right-parenthesis Baseline equals 1"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">‖</mml:mo> <mml:mi>P</mml:mi> <mml:msub> <mml:mo fence="false" stretchy="false">‖</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> </mml:msub> <mml:mstyle scriptlevel="0"> <mml:mrow class="MJX-TeXAtom-OPEN"> <mml:mo maxsize="1.2em" minsize="1.2em">(</mml:mo> </mml:mrow> </mml:mstyle> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>z</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:mi>r</mml:mi> <mml:mstyle scriptlevel="0"> <mml:mrow class="MJX-TeXAtom-CLOSE"> <mml:mo maxsize="1.2em" minsize="1.2em">)</mml:mo> </mml:mrow> </mml:mstyle> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\|P\|_{L_{\infty }\bigl (|z|\le r\bigr )}=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and show that cap<inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper E right-parenthesis less-than-or-equal-to 2 r epsilon"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≤</mml:mo> <mml:mn>2</mml:mn> <mml:mi>r</mml:mi> <mml:mi>ϵ</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">(E)\le 2r\epsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m 2 left-parenthesis upper E right-parenthesis less-than-or-equal-to pi left-parenthesis 2 r epsilon right-parenthesis squared"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>m</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>E</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≤</mml:mo> <mml:mi>π</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mn>2</mml:mn> <mml:mi>r</mml:mi> <mml:mi>ϵ</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">m_{2} (E)\le \pi (2r\epsilon )^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are the sharp estimates for the size of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our main result, however, involves generalizations of this to polynomials in several variables, as measured by Lebesgue measure on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper C Superscript n"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {C}^{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or product capacity and Favarov’s capacity. Several of our estimates are sharp with respect to order in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="r"> <mml:semantics> <mml:mi>r</mml:mi> <mml:annotation encoding="application/x-tex">r</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon"> <mml:semantics> <mml:mi>ϵ</mml:mi> <mml:annotation encoding="application/x-tex">\epsilon</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF
  • Institutional Repository University of Antwerp (University of Antwerp) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Convergence of multivariate polynomials interpolating on a triangular array 1984 T. N. T. Goodman
A. Sharma
+ PDF Chat Polynomials and numerical ranges 1988 Chi-Kwong Li
+ PDF Chat Polynomial approximation on 𝑦=𝑥^{𝛼} 1970 Eli Passow
Louis Raymon
+ Polynomial numerical indices of 𝐶(𝐾) and 𝐿₁(𝜇) 2013 Domingo Garcı́a
Bogdan Grecu
Manuel Maestre
Miguel Martı́n
Javier Merí
+ PDF Chat On the inequality |𝑝(𝑧)|≤𝑝(|𝑧|) for polynomials 1995 Valerio De Angelis
+ On some polynomials and series of Bloch–Pólya type 2017 Alexander Bérkovich
Ali Kemal Uncu
+ A note on 𝐿^{𝑝}-bounded point evaluations for polynomials 2016 Liming Yang
+ On almost polynomial growth of proper central polynomials 2024 Antonio Giambruno
Daniela La Mattina
César Polcino Milies
+ PDF Chat Multivariate rational approximation 1986 Ronald DeVore
Xiang Ming Yu
+ PDF Chat Polynomials with no small prime values 1986 Kevin S. McCurley
+ Numerical Analysis 2000 Vol. II: Interpolation and extrapolation 2000 Claude Brezinski
+ On the order of polynomial approximation for closed Jordan domains 1972 T. Kővári
+ Polynomial Interpolation and Approximation in C^d 2011 Thomas Bloom
Len Bos
Jean-Paul Calvi
N. Levenberg
+ PDF Chat Note on osculatory rational interpolation 1962 Herbert E. Salzer
+ On the least common multiple of several consecutive values of a polynomial 2023 Artūras Dubickas
+ On the polynomial numerical index of the real spaces <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msub><mml:mi>c</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math>, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:msub><mml:mi>ℓ</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.gif" overflow="scroll"><mml:msub><mml:mi>ℓ</mml:mi… 2007 Sung Guen Kim
Miguel Martı́n
Javier Merí
+ PDF Chat A Faber series approach to cardinal interpolation 1992 Charles K. Chui
Joachim Stöckler
J. D. Ward
+ PDF Chat Mean-square approximation by polynomials on the unit disk 1990 Thomas Kriete
Barbara D. MacCluer
+ PDF Chat On integer Chebyshev polynomials 1997 Laurent Habsieger
Bruno Salvy
+ PDF Chat An estimate for coefficients of polynomials in 𝐿²-norm 1994 Gradimir V. Milovanović
Allal Guessab