On the convergence of ∑𝑐_{𝑛}𝑓(𝑛𝑥) and the Lip 1/2 class

Type: Article

Publication Date: 1997-01-01

Citations: 12

DOI: https://doi.org/10.1090/s0002-9947-97-01837-0

Abstract

We investigate the almost everywhere convergence of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation c Subscript n Baseline f left-parenthesis n x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>∑</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum c_{n} f(nx)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a measurable function satisfying <disp-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis x plus 1 right-parenthesis equals f left-parenthesis x right-parenthesis comma integral Subscript 0 Superscript 1 Baseline f left-parenthesis x right-parenthesis d x equals 0 period"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>,</mml:mo> <mml:mspace width="2em"/> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msubsup> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mspace width="thinmathspace"/> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo>=</mml:mo> <mml:mn>0.</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\begin{equation*} f(x+1) = f(x), \qquad \int _{0}^{1} f(x) \, dx =0.\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> By a known criterion, if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> satisfies the above conditions and belongs to the Lip <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"> <mml:semantics> <mml:mi>α</mml:mi> <mml:annotation encoding="application/x-tex">\alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula> class for some <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha greater-than 1 slash 2"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\alpha &gt; 1/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation c Subscript n Baseline f left-parenthesis n x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>∑</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>n</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum c_{n} f(nx)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a.e. convergent provided <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation c Subscript n Superscript 2 Baseline greater-than plus normal infinity"> <mml:semantics> <mml:mrow> <mml:mo>∑</mml:mo> <mml:msubsup> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>&gt;</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum c_{n}^{2} &gt; +\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Using probabilistic methods, we prove that the above result is best possible; in fact there exist Lip 1/2 functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and almost exponentially growing sequences <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis n Subscript k Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(n_{k})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation c Subscript k Baseline f left-parenthesis n Subscript k Baseline x right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo>∑</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>n</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mi>x</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum c_{k} f(n_{k} x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a.e. divergent for some <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis c Subscript k Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msub> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(c_{k})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation c Subscript k Superscript 2 Baseline greater-than plus normal infinity"> <mml:semantics> <mml:mrow> <mml:mo>∑</mml:mo> <mml:msubsup> <mml:mi>c</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>k</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:mo>&gt;</mml:mo> <mml:mo>+</mml:mo> <mml:mi mathvariant="normal">∞</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum c_{k}^{2} &gt; +\infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For functions <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with Fourier series having a special structure, we also give necessary and sufficient convergence criteria. Finally we prove analogous results for the law of the iterated logarithm.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat On weak convergence in 𝐻¹(𝑅^{𝑑}) 1994 Peter W. Jones
Jean-Lin Journé
+ PDF Chat On weak* convergence in 𝐻¹ 1996 Joseph A. Cima
Alec Matheson
+ PDF Chat Mean convergence in 𝐿^{𝑝} spaces 1972 W. P. Novinger
+ PDF Chat Mean convergence and compact subsets of 𝐿₁ 1971 Benjamin Halpern
+ PDF Chat A relation between pointwise convergence of functions and convergence of functionals 1983 Haı̈m Brezis
Élliott H. Lieb
+ PDF Chat Weak convergence of the empirical characteristic function 1985 J. E. Yukich
+ PDF Chat On strong unicity of 𝐿₁-approximation 1981 András Kroó
+ PDF Chat Pointwise in terms of weak convergence 1974 J. R. Baxter
+ On sequences of 𝐶^{𝑘,𝛿}_{𝑏} maps which converge in the uniform 𝐶⁰-norm 2000 Mohamed Sami ElBialy
+ PDF Chat A note on 𝐶_{𝑐}(𝑋) 1975 G. D. Richardson
D. C. Kent
+ Tauberian theorems on ℝ⁺ and applications 2024 Wei-Gang Jian
Hui-Sheng Ding
+ PDF Chat Weak-star convergence in the dual of the continuous functions on the 𝑛-cube, 1≤𝑛≤∞ 1983 R. B. Darst
Zorabi Honargohar
+ 𝐴_{𝑝} weights for nondoubling measures in 𝑅ⁿ and applications 2002 Joan Orobitg
Carlos Pérez
+ PDF Chat On the existence of uniformly consistent estimates 1985 Yannis G. Yatracos
+ PDF Chat Weak compactness in $L\sp 1(\mu,X)$ 1991 A. Ülger
+ PDF Chat On 𝑁^{ℵ₁} and the almost-Lindelöf property 1975 Stephen H. Hechler
+ PDF Chat A convergence question in 𝐻^{𝑝} 1971 Stephen Scheinberg
+ PDF Chat Weak convergence of measures and weak type (1,𝑞) of maximal convolution operators 1986 Filippo Chiarenza
Alfonso Villani
+ On large ℓ₁-sums of Lipschitz-free spaces and applications 2022 Leandro Candido
Héctor Guzmán
+ PDF Chat Uniform convergence of ergodic limits and approximate solutions 1992 Sen-Yen Shaw