On the correlations of directions in the Euclidean plane

Type: Article

Publication Date: 2005-10-21

Citations: 20

DOI: https://doi.org/10.1090/s0002-9947-05-03783-9

Abstract

Let ${\mathcal {R}}^{(\nu )}_{(x,y),Q}$ denote the repartition of the $\nu$-level correlation measure of the finite set of directions $P_{(x,y)}P$, where $P_{(x,y)}$ is the fixed point $(x,y)\in [0,1)^{2}$ and $P$ is an integer lattice point in the square $[-Q,Q]^{2}$. We show that the average of the pair correlation repartition ${\mathcal {R}}^{(2)}_{(x,y),Q}$ over $(x,y)$ in a fixed disc ${\mathbb {D}}_{0}$ converges as $Q\rightarrow \infty$. More precisely we prove, for every $\lambda \in {\mathbb {R}}_{+}$ and $0<\delta <\frac {1}{10}$, the estimate \begin{equation*} \frac {1}{\operatorname {Area} ({\mathbb {D}}_{0})} \iint _{\mathbb {D}_0} \mathcal {R}^{(2)}_{(x,y),Q} (\lambda )\, dx\, dy = \frac {2\pi \lambda }{3} + O_{\mathbb {D}_0, \lambda , \delta } (Q^{-\frac {1}{10}+\delta }) \;\; \text {as $Q\rightarrow \infty $.} \end{equation*} We also prove that for each individual point $(x,y)\in [0,1)^{2}$, the $6$-level correlation ${\mathcal {R}}^{(6)}_{(x,y),Q}(\lambda )$ diverges at any point $\lambda \in {\mathbb {R}}^{5}_{+}$ as $Q\rightarrow \infty$, and we give an explicit lower bound for the rate of divergence.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ On the correlations of directions in the Euclidean plane 2004 Florin P. Boca
Alexandru Zaharescu
+ PDF Chat On the pair correlation density for hyperbolic angles 2015 Dubi Kelmer
Alex Kontorovich
+ PDF Chat The Distribution of Directions in an Affine Lattice: Two-Point Correlations and Mixed Moments 2013 Daniel El-Baz
Jens Marklof
Ilya Vinogradov
+ Poissonian Pair Correlation in Higher Dimensions 2018 Stefan Steinerberger
+ PDF Chat On Correlation in Space 1874 T. Archer Hirst
+ The metric theory of the pair correlation function for small non-integer powers 2021 Zeév Rudnick
Niclas Technau
+ Poissonian Pair Correlation in Higher Dimensions. 2018 Stefan Steinerberger
+ PDF Chat On pair correlation and discrepancy 2017 Sigrid Grepstad
Gerhard Larcher
+ On some properties of the point correlation dimension 2003 Nikolay K. Vitanov
Elka D. Yankulova
+ PDF Chat On lattice-points in a random sphere 1967 K. Chandrasekharan
Raghavan Narasimhan
+ Poissonian pair correlation for higher dimensional real sequences 2023 Tanmoy Bera
Mithun Kumar Das
Anirban Mukhopadhyay
+ Pair correlation of hyperbolic lattice angles 2013 Florin P. Boca
Alexandru A. Popa
Alexandru Zaharescu
+ Pair correlation of hyperbolic lattice angles 2013 Florin P. Boca
Alexandru A. Popa
Alexandru Zaharescu
+ From exponential counting to pair correlations 2022 Jouni Parkkonen
Frédéric Paulin
+ On Pair Correlation of Sequences 2019 Gerhard Larcher
Wolfgang Stockinger
+ On Pair Correlation of Sequences 2019 Gerhard Larcher
Wolfgang Stockinger
+ Effective pair correlations of fractional powers of complex grid points 2023 Rafael Sayous
+ PDF Chat 7. On pair correlation of sequences 2020 Gerhard Larcher
Wolfgang Stockinger
+ Pair correlations of the leVeque sequence on the polydisc 2008 R. Nair
+ On the correlation order 2006 Yi Zhang
Chengguo Weng