Local well-posedness for quadratic Schr\

Type: Preprint

Publication Date: 2011-05-09

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Local well-posedness for quadratic Schrödinger equations in $\mathbf{R^{1+1}}$: a normal form approach 2011 Seungly Oh
Atanas Stefanov
+ On quadratic Schrödinger equations in <b>R</b> <sup>1+1</sup> : a normal form approach 2012 Seungly Oh
Atanas Stefanov
+ Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$ 2008 Nobu Kishimoto
+ Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation 2005 Ioan Bejenaru
Terence Tao
+ Local well-posedness for the $H^2$-critical nonlinear Schr\"odinger equation 2013 Thierry Cazenave
Daoyuan Fang
Zheng Han
+ Local well-posedness for the nonlinear Schr\"odinger equation in modulation spaces $M_{p,q}^{s}(\mathbb{R}^d)$ 2016 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+ PDF Chat Local well-posedness for the Maxwell-Schrödinger equation 2005 Makoto Nakamura
Takeshi Wada
+ On a quadratic nonlinear Schrödinger equation: sharp well-posedness and ill-posedness 2009 Yongsheng Li
Yifei Wu
+ PDF Chat Local well-posedness for quadratic nonlinear Schrödinger equations and the ``good'' Boussinesq equation 2010 Nobu Kishimoto
Kotaro Tsugawa
+ Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation 2013 Thierry Cazenave
Daoyuan Fang
Han Zheng
+ Local and global well-posedness for a quadratic Schrödinger system on spheres and Zoll manifolds 2019 Marcelo Nogueira
Mahendra Panthee
+ Local and global well-posedness for a quadratic Schr\"odinger system on spheres and Zoll manifolds 2019 Marcelo Nogueira
Mahendra Panthee
+ PDF Chat On the global well-posedness of the quadratic NLS on $$H^1({{\mathbb {T}}}) + L^2({{\mathbb {R}}})$$ 2021 Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+ PDF Chat Global well-posedness for the generalized derivative nonlinear Schr\"odinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ PDF Chat Quadratic forms for the 1-D semilinear Schrödinger equation 1996 Carlos E. Kenig
Gustavo Ponce
Luis Vega
+ Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity $\overline{u}^2$ in negative Sobolev spaces 2022 Ruoyuan Liu
+ The Nonlinear Schrödinger Equation: Local Theory 2014 Felipe Linares
Gustavo Ponce
+ Global well-posedness for the generalized derivative nonlinear Schrödinger equation 2021 Ben Pineau
Mitchell A. Taylor
+ Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators 2022 Jean‐Baptiste Casteras
Juraj Földes
Gennady Uraltsev
+ PDF Chat LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION WITH HARMONIC POTENTIAL IN H<sup>s</sup> 2011 Shan Zhang
Zuhan Liu
Zhongxue LĂŒ

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (0)

Action Title Year Authors