Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Local well-posedness for quadratic Schr\
Seungly Oh
,
Atanas Stefanov
Type:
Preprint
Publication Date:
2011-05-09
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Local well-posedness for quadratic Schrödinger equations in $\mathbf{R^{1+1}}$: a normal form approach
2011
Seungly Oh
Atanas Stefanov
+
On quadratic Schrödinger equations in <b>R</b> <sup>1+1</sup> : a normal form approach
2012
Seungly Oh
Atanas Stefanov
+
Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$
2008
Nobu Kishimoto
+
Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation
2005
Ioan Bejenaru
Terence Tao
+
Local well-posedness for the $H^2$-critical nonlinear Schr\"odinger equation
2013
Thierry Cazenave
Daoyuan Fang
Zheng Han
+
Local well-posedness for the nonlinear Schr\"odinger equation in modulation spaces $M_{p,q}^{s}(\mathbb{R}^d)$
2016
Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+
PDF
Chat
Local well-posedness for the Maxwell-Schrödinger equation
2005
Makoto Nakamura
Takeshi Wada
+
On a quadratic nonlinear Schrödinger equation: sharp well-posedness and ill-posedness
2009
Yongsheng Li
Yifei Wu
+
PDF
Chat
Local well-posedness for quadratic nonlinear Schrödinger equations and the ``good'' Boussinesq equation
2010
Nobu Kishimoto
Kotaro Tsugawa
+
Local well-posedness for the $H^2$-critical nonlinear Schrödinger equation
2013
Thierry Cazenave
Daoyuan Fang
Han Zheng
+
Local and global well-posedness for a quadratic Schrödinger system on spheres and Zoll manifolds
2019
Marcelo Nogueira
Mahendra Panthee
+
Local and global well-posedness for a quadratic Schr\"odinger system on spheres and Zoll manifolds
2019
Marcelo Nogueira
Mahendra Panthee
+
PDF
Chat
On the global well-posedness of the quadratic NLS on $$H^1({{\mathbb {T}}}) + L^2({{\mathbb {R}}})$$
2021
Leonid Chaichenets
Dirk Hundertmark
Peer Christian Kunstmann
Nikolaos Pattakos
+
PDF
Chat
Global well-posedness for the generalized derivative nonlinear Schr\"odinger equation
2021
Ben Pineau
Mitchell A. Taylor
+
PDF
Chat
Quadratic forms for the 1-D semilinear Schrödinger equation
1996
Carlos E. Kenig
Gustavo Ponce
Luis Vega
+
Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity $\overline{u}^2$ in negative Sobolev spaces
2022
Ruoyuan Liu
+
The Nonlinear Schrödinger Equation: Local Theory
2014
Felipe Linares
Gustavo Ponce
+
Global well-posedness for the generalized derivative nonlinear Schrödinger equation
2021
Ben Pineau
Mitchell A. Taylor
+
Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators
2022
JeanâBaptiste Casteras
Juraj Földes
Gennady Uraltsev
+
PDF
Chat
LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRĂDINGER EQUATION WITH HARMONIC POTENTIAL IN H<sup>s</sup>
2011
Shan Zhang
Zuhan Liu
Zhongxue LĂŒ
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (0)
Action
Title
Year
Authors