A group of paths in ℝ²

Type: Article

Publication Date: 1996-01-01

Citations: 8

DOI: https://doi.org/10.1090/s0002-9947-96-01562-0

Abstract

We define a group structure on the set of compact “minimal” paths in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We classify all finitely generated subgroups of this group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: they are free products of free abelian groups and surface groups. Moreover, each such group occurs in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The subgroups of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> isomorphic to surface groups arise from certain topological <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-forms on the corresponding surfaces. We construct examples of such <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-forms for cohomology classes corresponding to certain eigenvectors for the action on cohomology of a pseudo-Anosov diffeomorphism. Using <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we construct a non-polygonal tiling problem in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, a finite set of tiles whose corresponding tilings are not equivalent to those of any set of polygonal tiles. The group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has applications to combinatorial tiling problems of the type: given a set of tiles <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a region <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, can <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be tiled by translated copies of tiles in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>?

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The structure of some virtually free pro-𝑝 groups 1999 Claus Scheiderer
+ PDF Chat On the intersection of a class of maximal subgroups of a finite group 1989 Xiu Yun Guo
+ PDF Chat On groups of finite weight 1976 Phil Kutzko
+ PDF Chat 𝑆-groups revisited 1981 Roger Hunter
Elbert A. Walker
+ PDF Chat The subgroups of a free product of two groups with an amalgamated subgroup 1970 A. Karrass
D. Solitar
+ PDF Chat The group of automorphisms of a class of finite 𝑝-groups 1982 Arye Juhász
+ PDF Chat A note on finiteness properties of graphs of groups 2021 Frédéric Haglund
Daniel T. Wise
+ PDF Chat Groups of finite weight 1981 A. H. Rhemtulla
+ PDF Chat 𝐾-groups generated by 𝐾-spaces 1975 Eric C. Nummela
+ PDF Chat On automorphisms of free pro-𝑝-groups. I 1990 Wolfgang Herfort
Luis Ribes
+ PDF Chat 𝑁𝐾₁ of finite groups 1987 Dennis R. Harmon
+ PDF Chat On Sylow intersections in finite groups 1984 Geoffrey R. Robinson
+ PDF Chat A classification theorem for abelian 𝑝-groups 1975 Robert B. Warfield
+ PDF Chat Chains which are coset spaces of 𝑡𝑙-groups 1970 Robert L. Madell
+ PDF Chat A note on the existence of 𝐺-maps between spheres 1987 Stefan Waner
+ PDF Chat Countable closed 𝐿𝐹𝐶-groups with 𝑝-torsion 1993 Felix Leinen
+ On groups having a 𝑝-constant character 2020 Silvio Dolfi
Emanuele Pacifici
Lucía Sanus
+ PDF Chat Embedding of 𝑈_{𝜔}-groups in 𝐷_{𝜔}-groups 1988 Charles Cassidy
+ PDF Chat Some properties of FC-groups which occur as automorphism groups 1986 Jay Zimmerman
+ PDF Chat Actions of groups of order 𝑝𝑞 1972 Connor Lazarov