Yet Another Proof Of Szemerédi's Theorem

Type: Book-Chapter

Publication Date: 2010-01-01

Citations: 9

DOI: https://doi.org/10.1007/978-3-642-14444-8_8

Abstract

To Endre Szemerédi on the occasion of his 70th birthday Using the density-increment strategy of Roth and Gowers, we derive Szemerédi’s theorem on arithmetic progressions from the inverse conjectures GI (s) for the Gowers norms, recently established by the authors and Ziegler in [8].

Locations

  • Bolyai Society mathematical studies - View
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF
  • Bolyai Society mathematical studies - View
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF
  • Bolyai Society mathematical studies - View
  • arXiv (Cornell University) - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Yet another proof of Szemeredi's theorem 2010 Ben Green
Terence Tao
+ Finite Analogs of Szemerédi's Theorem 2009 Paul Raff
Doron Zeilberger
+ PDF Chat Finite analogs of Szemerédi’s theorem 2010 Paul Raff
Doron Zeilberger
+ Szemerédi's theorem for <i>k</i> &gt; 3 2006 Terence Tao
Van H. Vu
+ Szemerédi’s proof of Szemerédi’s theorem 2020 Tianyi Tao
+ PDF A new proof of Roth’s theorem on arithmetic progressions 2008 Ernie Croot
Olof Sisask
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ Erd\H{o}s and Arithmetic Progressions 2015 W. T. Gowers
+ Erdős and Arithmetic Progressions 2015 W. T. Gowers
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ PDF Chat An arithmetic transference proof of a relative Szemerédi theorem 2013 Yufei Zhao
+ On a generalisation of Roth's theorem for arithmetic progressions and applications to sum-free subsets 2012 Jehanne Dousse
+ A new proof of Roth's theorem on arithmetic progressions 2008 Ernie Croot
Olof Sisask
+ Szemerédi’s theorem 1981 Ronald Graham
+ Szemerédi’s Theorem 2013 Hans Jürgen Prömel
+ Szemerédi’s theorem 2019
+ Szemerédi’s theorem 2015 Ron Graham
Steve Butler
+ Sharp Szemerédi-Trotter constructions from arbitrary number fields 2023 Gabriel Currier
+ A new proof of Szemerédi's theorem 2001 W. T. Gowers
+ On a generalisation of Roth's theorem for arithmetic progressions and applications to sum-free subsets 2012 Jehanne Dousse