Optimizing for an arbitrary perfect entangler. I. Functionals

Type: Article

Publication Date: 2015-06-08

Citations: 51

DOI: https://doi.org/10.1103/physreva.91.062306

Abstract

Optimal control theory is a powerful tool for improving figures of merit in quantum information tasks. Finding the solution to any optimal control problem via numerical optimization depends crucially on the choice of the optimization functional. Here, we derive a functional that targets the full set of two-qubit perfect entanglers, gates capable of creating a maximally-entangled state out of some initial product state. The functional depends on easily-computable local invariants and uniquely determines when a gate evolves into a perfect entangler. Optimization with our functional is most useful if the two-qubit dynamics allows for the implementation of more than one perfect entangler. We discuss the reachable set of perfect entanglers for a generic Hamiltonian that corresponds to several quantum information platforms of current interest.

Locations

  • Physical Review A - View - PDF
  • eScholarship (California Digital Library) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Maynooth University ePrints and eTheses Archive (Maynooth University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Report on 1902.11284v4 2019 Nathan Shammah
+ PDF Chat Report on 1902.11284v4 2019 Michael H. Goerz
Daniel Basilewitsch
Fernando Gago-Encinas
Martin Krauß
K. Horn
David Reich
Christiane P. Koch
+ PDF Chat Krotov: A Python implementation of Krotov's method for quantum optimal control 2019 Michael H. Goerz
Daniel Basilewitsch
Fernando Gago-Encinas
Matthias Krauß
Karl P. Horn
Daniel M. Reich
Christiane P. Koch
+ PDF Chat Optimizing for an arbitrary perfect entangler. II. Application 2015 Michael H. Goerz
Giulia Gualdi
Daniel M. Reich
Christiane P. Koch
Felix Motzoi
K. Birgitta Whaley
Jiří Vala
Matthias M. Müller
Simone Montangero
Tommaso Calarco
+ PDF Chat Report on 1902.11284v3 2019 Michael H. Goerz
Daniel Basilewitsch
Fernando Gago-Encinas
Martin Krauß
K. Horn
David Reich
Christiane P. Koch
+ PDF Chat Report on 1902.11284v3 2019 Nathan Shammah
+ Optimal Control of Families of Quantum Gates 2022 Frédéric Sauvage
Florian Mintert
+ PDF Chat Enhancing Quantum Entanglement in Bipartite Systems: Leveraging Optimal Control and Physics-Informed Neural Networks 2024 Nahid Binandeh Dehaghani
A. Pedro Aguiar
Rafał Wiśniewski
+ PDF Chat Report on 2205.02429v1 2022 Shushen Qin
M. Cramer
Christiane P. Koch
Alessio Serafini
+ PDF Chat Report on 2205.02429v1 2022 Shushen Qin
M. Cramer
Christiane P. Koch
Alessio Serafini
+ PDF Chat Report on 2205.02429v1 2022 Shushen Qin
M. Cramer
Christiane P. Koch
Alessio Serafini
+ PDF Chat Training Schrödinger’s cat: quantum optimal control 2015 Steffen J. Glaser
Ugo Boscain
Tommaso Calarco
Christiane P. Koch
Walter Köckenberger
Ronnie Kosloff
Ilya Kuprov
Burkhard Luy
S. G. Schirmer
Thomas Schulte‐Herbrüggen
+ PDF Chat GRADIENT FLOWS FOR OPTIMIZATION IN QUANTUM INFORMATION AND QUANTUM DYNAMICS: FOUNDATIONS AND APPLICATIONS 2010 Thomas Schulte‐Herbrüggen
Steffen J. Glaser
Gunther Dirr
Uwe Helmke
+ PDF Chat Quantum computing with two independent control functions: Optimal solutions to the teleportation protocol 2022 Emanuel F. de Lima
Marllos E. F. Fernandes
L. K. Castelano
+ PDF Chat qopt: An experiment-oriented Qubit Simulation and Quantum Optimal Control Package 2021 Julian D. Teske
Hendrik Bluhm
+ PDF Chat Optimal control for Hamiltonian parameter estimation in non-commuting and bipartite quantum dynamics 2022 Shushen Qin
M. Cramer
Christiane P. Koch
Alessio Serafini
+ Optimal control for Hamiltonian parameter estimation in non-commuting and bipartite quantum dynamics 2022 Shushen Qin
M. Cramer
Christiane P. Koch
Alessio Serafini
+ PDF Chat QuOCS: The quantum optimal control suite 2023 Marco Rossignolo
Thomas Reisser
Alastair Marshall
Phila Rembold
Alice Pagano
Philipp J. Vetter
Ressa S. Said
Matthias M. Müller
Felix Motzoi
Tommaso Calarco
+ PDF Chat High-fidelity spin entanglement using optimal control 2014 Florian Dolde
Ville Bergholm
Ya Wang
Ingmar Jakobi
Boris Naydenov
Sébastien Pezzagna
Jan Meijer
Fedor Jelezko
Philipp Neumann
Thomas Schulte‐Herbrüggen
+ qopt: An experiment-oriented Qubit Simulation and Quantum Optimal Control Package 2021 Julian D. Teske
Pascal Cerfontaine
Hendrik Bluhm