Type: Article
Publication Date: 1999-01-01
Citations: 95
DOI: https://doi.org/10.1090/s0894-0347-99-00282-9
The aim of the paper is to develop the Fourier Analysis techniques needed in the study of optimal well-posedness and global regularity properties of the Yang-Mills equations in Minkowski space-time <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n plus 1"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^{n+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for the case of the critical dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n equals 4"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We introduce new functional spaces and prove new bilinear estimates for solutions of the homogeneous wave equation, which can be viewed as generalizations of the well-known Strichartz-Pecher inequalities.