On the optimal local regularity for the Yang-Mills equations in ℝ⁴⁺¹

Type: Article

Publication Date: 1999-01-01

Citations: 95

DOI: https://doi.org/10.1090/s0894-0347-99-00282-9

Abstract

The aim of the paper is to develop the Fourier Analysis techniques needed in the study of optimal well-posedness and global regularity properties of the Yang-Mills equations in Minkowski space-time <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R Superscript n plus 1"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^{n+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for the case of the critical dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n equals 4"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n=4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We introduce new functional spaces and prove new bilinear estimates for solutions of the homogeneous wave equation, which can be viewed as generalizations of the well-known Strichartz-Pecher inequalities.

Locations

  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Global Regularity for the Yang-Mills Equations on High Dimensional Minkowski Space 2005 Joachim Krieger
Jacob Sterbenz
+ PDF Chat Global regularity for the minimal surface equation in Minkowskian geometry 2010 Atanas Stefanov
+ PDF Chat Wave maps on (1+2)-dimensional curved spacetimes 2021 Cristian Gavrus
Casey Jao
Daniel Tataru
+ PDF Chat A Geometric Approach for Sharp Local Well-Posedness of Quasilinear Wave Equations 2017 Qian Janice Wang
+ Low regularity local well-posedness for the Chern-Simons-Higgs system in temporal gauge 2014 Hartmut Pecher
+ LOCAL EXISTENCE FOR SEMILINEAR WAVE EQUATIONS AND APPLICATIONS TO YANG–MILLS EQUATIONS 2005 Yung-Fu Fang
+ PDF Chat Wave Equation and Multiplier Estimates on Damek–Ricci Spaces 2009 Detlef Müller
Maria Vallarino
+ Weighted Lorentz estimates for subquadratic quasilinear elliptic equations with measure data 2024 Fengping Yao
+ PDF Chat Scattering for the Yang-Mills equations 1989 John C. Baez
+ PDF Chat On the optimal local regularity for gauge field theories 1997 Sergiù Klainerman
Matei Machedon
+ Global Regularity and Scattering for General Non-Linear Wave Equations II. (4+1) Dimensional Yang--Mills Equations in the Lorentz Gauge 2004 Jacob Sterbenz
+ Local well-posedness of the Yang-Mills equation in the Temporal Gauge below the energy norm 2000 Terence Tao
+ Small data global existence and decay for two dimensional wave maps 2017 Willie Wai-Yeung Wong
+ Global existence for null-form wave equations with data in a Sobolev space of lower regularity and weight 2019 Kunio Hidano
Kazuyoshi Yokoyama
+ PDF Chat Smoothness and Function Spaces Generated by Homogeneous Multipliers 2012 K. Runovski
Hans‐Jürgen Schmeißer
+ PDF Chat Global regularity for the Yang–Mills equations on high dimensional Minkowski space 2012 Joachim Krieger
Jacob Sterbenz
+ PDF Chat Global Regularity for the Maxwell-Klein-Gordon Equation with Small Critical Sobolev Norm in High Dimensions 2004 Igor Rodnianski
Terence Tao
+ Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2019 Hartmut Pecher
+ Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2019 Hartmut Pecher
+ PDF Chat Regularity of quasi-linear equations with H\"ormander vector fields of step two 2021 Giovanna Citti
Shirsho Mukherjee