Amenable representations and finite injective von Neumann algebras

Type: Article

Publication Date: 1997-01-01

Citations: 9

DOI: https://doi.org/10.1090/s0002-9939-97-03754-4

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper M right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the unitary group of a finite, injective von Neumann algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper M"> <mml:semantics> <mml:mi>M</mml:mi> <mml:annotation encoding="application/x-tex">M</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We observe that any subrepresentation of a group representation into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper M right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is amenable in the sense of Bekka; this yields short proofs of two known results—one by Robertson, one by Haagerup—concerning group representations into <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper U left-parenthesis upper M right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>U</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>M</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">U(M)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Nuclear 𝐶*-algebras have amenable unitary groups 1992 Alan L. T. Paterson
+ PDF Chat Maximal abelian subalgebras of von Neumann algebras and representations of equivalence relations 1983 Colin E. Sutherland
+ Amenability and covariant injectivity of locally compact quantum groups 2015 Jason Crann
Matthias Neufang
+ PDF Chat Amenable actions and weak containment of certain representations of discrete groups 1994 M. Gabriella Kuhn
+ PDF Chat Characterizing<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:mi>ξ</mml:mi></mml:mrow></mml:math>-Lie Multiplicative Isomorphisms on Von Neumann Algebras 2014 Yamin Song
Jinchuan Hou
Xiaofei Qi
+ PDF Chat Inner amenable locally compact groups 1991 Anthony Lau
Alan L. T. Paterson
+ PDF Chat Finite operators and amenable 𝐶*-algebras 1976 John W. Bunce
+ PDF Chat Non-isomorphism of 𝐿_{𝑝}-spaces associated with finite and infinite von Neumann algebras 1996 Fedor Sukochev
+ Representations of von Neumann Algebras and Ultraproducts 2020 S. G. Haliullin
+ PDF Chat Invariant subspaces for algebras of linear operators and amenable locally compact groups 1988 Anthony Lau
James C. S. Wong
+ Operator biprojectivity of compact quantum groups 2009 Matthew Daws
+ PDF Chat Automorphism of von Neumann algebras as point transformations 1973 Charles Radin
+ PDF Chat Countably additive homomorphisms between von Neumann algebras 1995 L. J. Bunce
Jan Hamhalter
+ PDF Chat Representations of compact groups on Banach algebras 1984 David Gurarie
+ PDF Chat Inner product modules arising from compact automorphism groups of von Neumann algebras 1976 William L. Paschke
+ Connes embeddings and von Neumann regular closures of amenable group algebras 2012 Gábor Elek
+ PDF Chat Approximate innerness of positive linear maps of finite von Neumann algebras. II 1987 Chôichirô Sunouchi
Hideo Takemoto
+ Representations of finite-dimensional algebras 1992 Α. I. Kostrikin
Igor R. Shafarevich
+ PDF Chat Topological invariant means on the von Neumann algebra 𝑉𝑁(𝐺) 1982 Ching Chou
+ PDF Chat Subrepresentations of direct integrals and finite volume homogeneous spaces 1983 Elliot C. Gootman