Learning Multi-domain Convolutional Neural Networks for Visual Tracking

Type: Preprint

Publication Date: 2016-06-01

Citations: 2649

DOI: https://doi.org/10.1109/cvpr.2016.465

Download PDF

Abstract

We propose a novel visual tracking algorithm based on the representations from a discriminatively trained Convolutional Neural Network (CNN). Our algorithm pretrains a CNN using a large set of videos with tracking ground-truths to obtain a generic target representation. Our network is composed of shared layers and multiple branches of domain-specific layers, where domains correspond to individual training sequences and each branch is responsible for binary classification to identify target in each domain. We train each domain in the network iteratively to obtain generic target representations in the shared layers. When tracking a target in a new sequence, we construct a new network by combining the shared layers in the pretrained CNN with a new binary classification layer, which is updated online. Online tracking is performed by evaluating the candidate windows randomly sampled around the previous target state. The proposed algorithm illustrates outstanding performance in existing tracking benchmarks.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Learning Multi-Domain Convolutional Neural Networks for Visual Tracking 2015 Hyeonseob Nam
Bohyung Han
+ Real-Time MDNet 2018 Ilchae Jung
Jeany Son
Mooyeol Baek
Bohyung Han
+ Real-Time MDNet 2018 Ilchae Jung
Jeany Son
Mooyeol Baek
Bohyung Han
+ Deep Tracking: Visual Tracking Using Deep Convolutional Networks 2015 Meera Hahn
Si Chen
Afshin Dehghan
+ PDF Chat Dual Deep Network for Visual Tracking 2017 Zhizhen Chi
Hongyang Li
Huchuan Lu
Ming–Hsuan Yang
+ PDF Chat Deep Learning for Visual Tracking: A Comprehensive Survey 2021 Seyed Mojtaba Marvasti-Zadeh
Li Cheng
Hossein Ghanei-Yakhdan
Shohreh Kasaei
+ High Performance Visual Object Tracking with Unified Convolutional Networks 2019 Zheng Zhu
Wei Zou
Guan Huang
Dalong Du
Chang Huang
+ PDF Chat DeepTrack: Learning Discriminative Feature Representations Online for Robust Visual Tracking 2015 Hanxi Li
Yi Li
Fatih Porikli
+ UCT: Learning Unified Convolutional Networks for Real-time Visual Tracking 2017 Zheng Zhu
Guan Huang
Wei Zou
Dalong Du
Chang Huang
+ Adversarial Semi-Supervised Multi-Domain Tracking 2020 Kourosh Meshgi
Maryam Sadat Mirzaei
+ TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild 2018 Matthias MĂźller
Adel Bibi
Silvio Giancola
Salman Alsubaihi
Bernard Ghanem
+ TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild 2018 Matthias MĂźller
Adel Bibi
Silvio Giancola
Salman Alsubaihi
Bernard Ghanem
+ Deep Learning of Appearance Models for Online Object Tracking 2016 Mengyao Zhai
Mehrsan Javan
Greg Mori
+ PDF Chat Target-Aware Deep Tracking 2019 Xin Li
Chao Ma
Baoyuan Wu
Zhenyu He
Ming–Hsuan Yang
+ Target-Aware Deep Tracking 2019 Xin Li
Chao Ma
Baoyuan Wu
Zhenyu He
Ming–Hsuan Yang
+ PDF Chat UCT: Learning Unified Convolutional Networks for Real-Time Visual Tracking 2017 Zheng Zhu
Guan Huang
Wei Zou
Dalong Du
Chang Huang
+ PDF Chat Robust and real-time deep tracking via multi-scale domain adaptation 2017 Xinyu Wang
Hanxi Li
Yi Li
Fumin Shen
Fatih Porikli
+ Robust and Real-time Deep Tracking Via Multi-Scale Domain Adaptation 2017 Xinyu Wang
Hanxi Li
Yi Li
Fumin Shen
Fatih Porikli
+ Transferring Rich Feature Hierarchies for Robust Visual Tracking 2015 Naiyan Wang
Siyi Li
Abhinav Gupta
Dit‐Yan Yeung
+ PDF Chat Deep learning in video multi-object tracking: A survey 2019 Gioele Ciaparrone
Francisco Luque SĂĄnchez
Siham Tabik
Luigi Troiano
Roberto Tagliaferri
Francisco Herrera