Symmetric powers of complete modules over a two-dimensional regular local ring

Type: Article

Publication Date: 1997-01-01

Citations: 30

DOI: https://doi.org/10.1090/s0002-9947-97-01819-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper R comma m right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo>,</mml:mo> <mml:mi>m</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(R,m)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a two-dimensional regular local ring with infinite residue field. For a finitely generated, torsion-free <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, write <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript n"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">A_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th symmetric power of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, mod torsion. We study the modules <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript n"> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">A_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n greater-than-or-equal-to 1"> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">n \geq 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is complete (i.e., integrally closed). In particular, we show that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B dot upper A equals upper A 2"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>⋅</mml:mo> <mml:mi>A</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">B\cdot A = A_{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for any minimal reduction <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B subset-of-or-equal-to upper A"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>⊆</mml:mo> <mml:mi>A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">B \subseteq A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and that the ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="circled-plus upper A Subscript n"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mo>⊕</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">\oplus _{n \geq 1} A_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is Cohen-Macaulay.

Locations

  • KU ScholarWorks (University of Kansas) - View - PDF
  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Torsion freeness of symmetric powers of ideals 2007 Alexandre Tchernev
+ PDF Chat A characterization of regular local rings 1971 Jacob Barshay
+ PDF Chat Regular overrings of regular local rings 1972 Judith D. Sally
+ PDF Chat Prime rings with involution whose symmetric zero-divisors are nilpotent 1973 P. M. Cohn
+ The Étale locus in complete local rings 2021 Raymond C. Heitmann
+ PDF Chat Symmetric homology over rings containing the rationals 1973 Patrick Fleury
+ PDF Chat A local characterization of Noetherian and Dedekind rings 1985 Yves Lequain
+ PDF Chat A two-dimensional non-Noetherian factorial ring 1974 Robert Gilmer
+ PDF Chat Simple near-ring centralizers of finite rings 1979 Carlton J. Maxson
Kirby C. Smith
+ PDF Chat A simple proof of Gabber’s theorem on projective modules over a localized local ring 1988 Richard G. Swan
+ PDF Chat Coefficient ideals 1991 Kishor Shah
+ PDF Chat Krull-Schmidt theorems in dimension 1 1996 Lawrence S. Levy
Charles Odenthal
+ PDF Chat About direct summands of projective modules over Laurent polynomial rings 1991 Satya Mandal
+ PDF Chat Projective modules with free multiples and powers 1986 Hyman Bass
Robert M. Guralnick
+ Constructing division rings as module-theoretic direct limits 2002 George M. Bergman
+ PDF Chat Projective modules 1976 S. Jøndrup
+ PDF Chat Two questions on scalar-reflexive rings 1992 Nicole Snashall
+ 𝐺₀ of a graded ring 1972 Leslie G. Roberts
+ Presentation of associated graded rings of Cohen-Macaulay local rings 1983 Young-Hyun Cho
+ PDF Chat Chain of prime ideals in formal power series rings 1983 Ada Maria de Souza Doering
Yves Lequain