Type: Article
Publication Date: 2015-10-01
Citations: 94
DOI: https://doi.org/10.1007/jhep10(2015)027
We study renormalizable extensions of the standard model that contain vector-like fermions in a (single) complex representation of the standard model gauge group. There are 11 models where the vector-like fermions Yukawa couple to the standard model fermions via the Higgs field. These models do not introduce additional fine-tunings. They can lead to, and are constrained by, a number of different flavor-changing processes involving leptons and quarks, as well as direct searches. An interesting feature of the models with strongly interacting vector-like fermions is that constraints from neutral meson mixings (apart from CP violation in $$ {K}^0-{\overline{K}}^0 $$ mixing) are not sensitive to higher scales than other flavor-changing neutral-current processes. We identify order 1/(4πM)2 (where M is the vector-like fermion mass) one-loop contributions to the coefficients of the four-quark operators for meson mixing, that are not suppressed by standard model quark masses and/or mixing angles.