On the nonexistence of elements of Kervaire invariant one

Type: Article

Publication Date: 2016-05-26

Citations: 355

DOI: https://doi.org/10.4007/annals.2016.184.1.1

Abstract

We show that the Kervaire invariant one elements θj ∈ π2j+1−2S exist only for j ≤ 6. By Browder’s Theorem, this means that smooth framed manifolds of Kervaire invariant one exist only in dimensions 2, 6, 14, 30, 62, and possibly 126. Except for dimension 126 this resolves a longstanding problem in algebraic topology.

Locations

  • arXiv (Cornell University) - View - PDF
  • Annals of Mathematics - View

Similar Works

Action Title Year Authors
+ On the non-existence of elements of Kervaire invariant one 2009 Michael A. Hill
Michael J. Hopkins
Douglas C. Ravenel
+ On the non-existence of elements of Kervaire invariant one 2009 Michael A. Hill
Michael J. Hopkins
Douglas C. Ravenel
+ PDF Chat On the Last Kervaire Invariant Problem 2024 Wei-Chen Lin
Guozhen Wang
Zhihong Xu
+ A plan of a positive solution of the Snaith Conjecture (2009) on the Kervaire invariants 2021 Петр Михайлович Ахметьев
+ PDF Chat A plan of a positive solution of the Snaith Conjecture (2009) on the Kervaire invariants 2021 Петр Михайлович Ахметьев
+ Kervaire’s invariant for framed manifolds 1978 J. H. Jones
Elmer Rees
+ A conjecture of Barratt-Jones-Mahowald concerning framed manifolds having Kervaire invariant one 1988 John Klippenstein
Victor Snaith
+ PDF Chat On the Kervaire invariant problem 1998 Norihiko Minami
+ On the Kervaire Obstruction 1971 C. P. Rourke
Dennis Sullivan
+ The Kervaire invariant problem 1983 M. G. Barratt
John D. S. Jones
Mark Mahowald
+ PDF Chat Nonexistence of equivariant degree one maps 1987 Janey Daccach
+ PDF Chat The Arf-Kervaire problem in algebraic topology: Sketch of the proof 2010 Michael A. Hill
Michael J. Hopkins
Douglas C. Ravenel
+ A remark on the Kervaire invariant problem 1984 Wen‐Hsiung Lin
+ Kodaira vanishing theorems on non-complete algebraic manifolds 1990 Ingrid Kosarew
Siegmund Kosarew
+ Equivariant Stable Homotopy Theory and the Kervaire Invariant Problem 2021 Michael A. Hill
Michael J. Hopkins
Douglas C. Ravenel
+ On extending the Conley-Zehnder fixed point theorem to other manifolds 1986 Alan Weinstein
+ On the Non-embeddability Of Dold's Manifold II 1966 Chiko Yoshioka
+ Kervaire Invariant One [after M. A. Hill, M. J. Hopkins, and D. C. Ravenel] 2011 Haynes Miller
+ The Kervaire invariant of a manifold 1971 Edgar H. Brown
+ PDF Chat The Kervaire invariant of (8𝑘+2)-manifolds 1965 Edgar H. Brown
Franklin P. Peterson