Bayesian Budget Feasibility with Posted Pricing

Type: Article
Publication Date: 2016-04-11
Citations: 29
DOI: https://doi.org/10.1145/2872427.2883032

Abstract

We consider the problem of budget feasible mechanism design proposed by Singer, but in a Bayesian setting. A principal has a public value for hiring a subset of the agents and a budget, while the agents have private costs for being hired. We consider both additive and submodular value functions of the principal. We show that there are simple, practical, ex post budget balanced posted pricing mechanisms that approximate the value obtained by the Bayesian optimal mechanism that is budget balanced only in expectation. A main motivating application for this work is crowdsourcing, e.g., on Mechanical Turk, where workers are drawn from a large population and posted pricing is standard. Our analysis methods relate to contention resolution schemes in submodular optimization of Vondràk et al. and the correlation gap analysis of Yan.

Locations

  • arXiv (Cornell University)

Ask a Question About This Paper

Summary

Login to see paper summary

We consider the problem of budget feasible mechanism design proposed by Singer (2010), but in a Bayesian setting. A principal has a public value for hiring a subset of the … We consider the problem of budget feasible mechanism design proposed by Singer (2010), but in a Bayesian setting. A principal has a public value for hiring a subset of the agents and a budget, while the agents have private costs for being hired. We consider both additive and submodular value functions of the principal. We show that there are simple, practical, ex post budget balanced posted pricing mechanisms that approximate the value obtained by the Bayesian optimal mechanism that is budget balanced only in expectation. A main motivating application for this work is the crowdsourcing large projects, e.g., on Mechanical Turk, where workers are drawn from a large population and posted pricing is standard. Our analysis methods relate to contention resolution schemes in submodular optimization of Vondrak et al. (2011) and the correlation gap analysis of Yan (2011).
We consider the problem of budget feasible mechanism design proposed by Singer (2010), but in a Bayesian setting. A principal has a public value for hiring a subset of the … We consider the problem of budget feasible mechanism design proposed by Singer (2010), but in a Bayesian setting. A principal has a public value for hiring a subset of the agents and a budget, while the agents have private costs for being hired. We consider both additive and submodular value functions of the principal. We show that there are simple, practical, ex post budget balanced posted pricing mechanisms that approximate the value obtained by the Bayesian optimal mechanism that is budget balanced only in expectation. A main motivating application for this work is the crowdsourcing large projects, e.g., on Mechanical Turk, where workers are drawn from a large population and posted pricing is standard. Our analysis methods relate to contention resolution schemes in submodular optimization of Vondrak et al. (2011) and the correlation gap analysis of Yan (2011).
We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism … We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism design problem requires the design a mechanism that incentivizes the sellers to truthfully report their cost and maximizes the buyer’s value while guaranteeing that the total payment does not exceed her budget. Such budget feasible mechanisms can model a buyer in a crowdsourcing market interested in recruiting a set of workers (sellers) to accomplish a task for her. This budget feasible mechanism design problem was introduced by Singer in 2010. We consider the general case where the buyer’s valuation is a monotone submodular function. There are a number of truthful mechanisms known for this problem. We offer two general frameworks for simple mechanisms, and by combining these frameworks, we significantly improve on the best known results, while also simplifying the analysis. For example, we improve the approximation guarantee for the general monotone submodular case from 7.91 to 5 and for the case of large markets (where each individual item has negligible value) from 3 to 2.58. More generally, given an r approximation algorithm for the optimization problem (ignoring incentives), our mechanism is a r + 1 approximation mechanism for large markets, an improvement from 2 r 2 . We also provide a mechanism without the large market assumption, where we achieve a 4 r + 1 approximation guarantee. We also show how our results can be used for the problem of a principal hiring in a Crowdsourcing Market to select a set of tasks subject to a total budget.
We study Bayesian mechanism design problems in settings where agents have budgets. Specifically, an agent's utility for an outcome is given by his value for the outcome minus any payment … We study Bayesian mechanism design problems in settings where agents have budgets. Specifically, an agent's utility for an outcome is given by his value for the outcome minus any payment he makes to the mechanism, as long as the payment is below his budget, and is negative infinity otherwise. This discontinuity in the utility function presents a significant challenge in the design of good mechanisms, and classical "unconstrained" mechanisms fail to work in settings with budgets. The goal of this paper is to develop general reductions from budget-constrained Bayesian MD to unconstrained Bayesian MD with small loss in performance. We consider this question in the context of the two most well-studied objectives in mechanism design---social welfare and revenue---and present constant factor approximations in a number of settings. Some of our results extend to settings where budgets are private and agents need to be incentivized to reveal them truthfully.
We study Bayesian mechanism design problems in settings where agents have budgets. Specifically, an agent's utility for an outcome is given by his value for the outcome minus any payment … We study Bayesian mechanism design problems in settings where agents have budgets. Specifically, an agent's utility for an outcome is given by his value for the outcome minus any payment he makes to the mechanism, as long as the payment is below his budget, and is negative infinity otherwise. This discontinuity in the utility function presents a significant challenge in the design of good mechanisms, and classical mechanisms fail to work in settings with budgets. The goal of this paper is to develop general reductions from budget-constrained Bayesian MD to unconstrained Bayesian MD with small loss in performance. We consider this question in the context of the two most well-studied objectives in mechanism design---social welfare and revenue---and present constant factor approximations in a number of settings. Some of our results extend to settings where budgets are private and agents need to be incentivized to reveal them truthfully.
We study Bayesian mechanism design problems in settings where agents have budgets. Specifically, an agent's utility for an outcome is given by his value for the outcome minus any payment … We study Bayesian mechanism design problems in settings where agents have budgets. Specifically, an agent's utility for an outcome is given by his value for the outcome minus any payment he makes to the mechanism, as long as the payment is below his budget, and is negative infinity otherwise. This discontinuity in the utility function presents a significant challenge in the design of good mechanisms, and classical mechanisms fail to work in settings with budgets. The goal of this paper is to develop general reductions from budget-constrained Bayesian MD to unconstrained Bayesian MD with small loss in performance. We consider this question in the context of the two most well-studied objectives in mechanism design---social welfare and revenue---and present constant factor approximations in a number of settings. Some of our results extend to settings where budgets are private and agents need to be incentivized to reveal them truthfully.
We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism … We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism design problem aims to design a mechanism which incentivizes the sellers to truthfully report their cost, and maximizes the buyer's value while guaranteeing that the total payment does not exceed her budget. Such budget feasible mechanisms can model a buyer in a crowdsourcing market interested in recruiting a set of workers (sellers) to accomplish a task for her. This budget feasible mechanism design problem was introduced by Singer in 2010. There have been a number of improvements on the approximation guarantee of such mechanisms since then. We consider the general case where the buyer's valuation is a monotone submodular function. We offer two general frameworks for simple mechanisms, and by combining these frameworks, we significantly improve on the best known results for this problem, while also simplifying the analysis. For example, we improve the approximation guarantee for the general monotone submodular case from 7.91 to 5; and for the case of large markets (where each individual item has negligible value) from 3 to 2.58. More generally, given an $r$ approximation algorithm for the optimization problem (ignoring incentives), our mechanism is a $r+1$ approximation mechanism for large markets, an improvement from $2r^2$. We also provide a similar parameterized mechanism without the large market assumption, where we achieve a $4r+1$ approximation guarantee.
We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism … We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism design problem aims to design a mechanism which incentivizes the sellers to truthfully report their cost, and maximizes the buyer's value while guaranteeing that the total payment does not exceed her budget. Such budget feasible mechanisms can model a buyer in a crowdsourcing market interested in recruiting a set of workers (sellers) to accomplish a task for her. This budget feasible mechanism design problem was introduced by Singer in 2010. There have been a number of improvements on the approximation guarantee of such mechanisms since then. We consider the general case where the buyer's valuation is a monotone submodular function. We offer two general frameworks for simple mechanisms, and by combining these frameworks, we significantly improve on the best known results for this problem, while also simplifying the analysis. For example, we improve the approximation guarantee for the general monotone submodular case from 7.91 to 5; and for the case of large markets (where each individual item has negligible value) from 3 to 2.58. More generally, given an $r$ approximation algorithm for the optimization problem (ignoring incentives), our mechanism is a $r+1$ approximation mechanism for large markets, an improvement from $2r^2$. We also provide a similar parameterized mechanism without the large market assumption, where we achieve a $4r+1$ approximation guarantee.
We study a problem of allocating divisible jobs, arriving online, to workers in a crowdsourcing setting which involves learning two parameters of strategically behaving workers. Each job is split into … We study a problem of allocating divisible jobs, arriving online, to workers in a crowdsourcing setting which involves learning two parameters of strategically behaving workers. Each job is split into a certain number of tasks that are then allocated to workers. Each arriving job has to be completed within a deadline and each task has to be completed satisfying an upper bound on probability of failure. The job population is homogeneous while the workers are heterogeneous in terms of costs, completion times, and times to failure. The job completion time and time to failure of each worker are stochastic with fixed but unknown means. The requester is faced with the challenge of learning two separate parameters of each (strategically behaving) worker simultaneously, namely, the mean job completion time and the mean time to failure. The time to failure of a worker depends on the duration of the task handled by the worker. Assuming non-strategic workers to start with, we solve this biparameter learning problem by applying the Robust UCB algorithm. Then, we non-trivially extend this algorithm to the setting where the workers are strategic about their costs. Our proposed mechanism is dominant strategy incentive compatible and ex-post individually rational with asymptotically optimal regret performance.
In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk mturk, ClickWorker clickworker, CrowdFlower crowdflower. In these markets, there … In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk mturk, ClickWorker clickworker, CrowdFlower crowdflower. In these markets, there is a requester who wants to hire workers to accomplish some tasks. Each worker is assumed to give some utility to the requester on getting hired. Moreover each worker has a minimum cost that he wants to get paid for getting hired. This minimum cost is assumed to be private information of the workers. The question then is -- if the requester has a limited budget, how to design a direct revelation mechanism that picks the right set of workers to hire in order to maximize the requester's utility? We note that although the previous work (Singer (2010) chen et al. (2011)) has studied this problem, a crucial difference in which we deviate from earlier work is the notion of large-scale markets that we introduce in our model. Without the large market assumption, it is known that no mechanism can achieve a competitive ratio better than 0.414 and 0.5 for deterministic and randomized mechanisms respectively (while the best known deterministic and randomized mechanisms achieve an approximation ratio of 0.292 and 0.33 respectively). In this paper, we design a budget-feasible mechanism for large markets that achieves a competitive ratio of 1 - 1/e ≃ 0.63. Our mechanism can be seen as a generalization of an alternate way to look at the proportional share mechanism, which is used in all the previous works so far on this problem. Interestingly, we can also show that our mechanism is optimal by showing that no truthful mechanism can achieve a factor better than 1 - 1/e, thus, fully resolving this setting. Finally we consider the more general case of submodular utility functions and give new and improved mechanisms for the case when the market is large.
In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk, ClickWorker, CrowdFlower. In these markets, there is a requester … In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk, ClickWorker, CrowdFlower. In these markets, there is a requester who wants to hire workers to accomplish some tasks. Each worker is assumed to give some utility to the requester. Moreover each worker has a minimum cost that he wants to get paid for getting hired. This minimum cost is assumed to be private information of the workers. The question then is - if the requester has a limited budget, how to design a direct revelation mechanism that picks the right set of workers to hire in order to maximize the requester's utility. We note that although the previous work has studied this problem, a crucial difference in which we deviate from earlier work is the notion of large-scale markets that we introduce in our model. Without the large market assumption, it is known that no mechanism can achieve an approximation factor better than 0.414 and 0.5 for deterministic and randomized mechanisms respectively (while the best known deterministic and randomized mechanisms achieve an approximation ratio of 0.292 and 0.33 respectively). In this paper, we design a budget-feasible mechanism for large markets that achieves an approximation factor of 1-1/e (i.e. almost 0.63). Our mechanism can be seen as a generalization of an alternate way to look at the proportional share mechanism which is used in all the previous works so far on this problem. Interestingly, we also show that our mechanism is optimal by showing that no truthful mechanism can achieve a factor better than 1-1/e; thus, fully resolving this setting. Finally we consider the more general case of submodular utility functions and give new and improved mechanisms for the case when the markets are large.
In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk, ClickWorker, CrowdFlower. In these markets, there is a requester … In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk, ClickWorker, CrowdFlower. In these markets, there is a requester who wants to hire workers to accomplish some tasks. Each worker is assumed to give some utility to the requester. Moreover each worker has a minimum cost that he wants to get paid for getting hired. This minimum cost is assumed to be private information of the workers. The question then is - if the requester has a limited budget, how to design a direct revelation mechanism that picks the right set of workers to hire in order to maximize the requester's utility. We note that although the previous work has studied this problem, a crucial difference in which we deviate from earlier work is the notion of large-scale markets that we introduce in our model. Without the large market assumption, it is known that no mechanism can achieve an approximation factor better than 0.414 and 0.5 for deterministic and randomized mechanisms respectively (while the best known deterministic and randomized mechanisms achieve an approximation ratio of 0.292 and 0.33 respectively). In this paper, we design a budget-feasible mechanism for large markets that achieves an approximation factor of 1-1/e (i.e. almost 0.63). Our mechanism can be seen as a generalization of an alternate way to look at the proportional share mechanism which is used in all the previous works so far on this problem. Interestingly, we also show that our mechanism is optimal by showing that no truthful mechanism can achieve a factor better than 1-1/e; thus, fully resolving this setting. Finally we consider the more general case of submodular utility functions and give new and improved mechanisms for the case when the markets are large.
In many practical crowdsourcing systems such as Amazon Mechanical Turk, posted pricing, where a pricing rule is published a priori, and workers then decide their task acceptance, is widely used … In many practical crowdsourcing systems such as Amazon Mechanical Turk, posted pricing, where a pricing rule is published a priori, and workers then decide their task acceptance, is widely used due to its simplicity. With the goal of designing efficient posted pricing, which recruits more high-quality workers with less budget, we study the impact of the following two ideas in posted pricing: (i) personalization and (ii) giving bonus to more qualified task completion. In the Bayesian setting where only prior distribution of workers' profiles are available, we first study the Price of Agnosticity (PoA) that quantifies the utility gap between personalized and common pricing policies, where PoA is shown to be bounded within a constant factor under some mild conditions. Next, we analytically prove that the impact of bonus is significant in common pricing, which implies that a complex personalized pricing with privacy concerns can be replaced by a simple common pricing once it is equipped with a simple bonus payment. We validate our analytical findings through extensive real experiments in Amazon Mechanical Turk, one of the most popular crowdsourcing platforms.
Consider a requester who wishes to crowdsource a series of identical binary labeling tasks to a pool of workers so as to achieve an assured accuracy for each task, in … Consider a requester who wishes to crowdsource a series of identical binary labeling tasks to a pool of workers so as to achieve an assured accuracy for each task, in a cost optimal way. The workers are heterogeneous with unknown but fixed qualities and their costs are private. The problem is to select for each task an optimal subset of workers so that the outcome obtained from the selected workers guarantees a target accuracy level. The problem is a challenging one even in a non strategic setting since the accuracy of aggregated label depends on unknown qualities. We develop a novel multi-armed bandit (MAB) mechanism for solving this problem. First, we propose a framework, Assured Accuracy Bandit (AAB), which leads to an MAB algorithm, Constrained Confidence Bound for a Non Strategic setting (CCB-NS). We derive an upper bound on the number of time steps the algorithm chooses a sub-optimal set that depends on the target accuracy level and true qualities. A more challenging situation arises when the requester not only has to learn the qualities of the workers but also elicit their true costs. We modify the CCB-NS algorithm to obtain an adaptive exploration separated algorithm which we call { \em Constrained Confidence Bound for a Strategic setting (CCB-S)}. CCB-S algorithm produces an ex-post monotone allocation rule and thus can be transformed into an ex-post incentive compatible and ex-post individually rational mechanism that learns the qualities of the workers and guarantees a given target accuracy level in a cost optimal way. We provide a lower bound on the number of times any algorithm should select a sub-optimal set and we see that the lower bound matches our upper bound upto a constant factor. We provide insights on the practical implementation of this framework through an illustrative example and we show the efficacy of our algorithms through simulations.
Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the task's requester, and … Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the task's requester, and may be adjusted based on the quality of the completed work, for example, through the use of "bonus" payments. In this paper, we study the requester's problem of dynamically adjusting quality-contingent payments for tasks. We consider a multi-round version of the well-known principal-agent model, whereby in each round a worker makes a strategic choice of the effort level which is not directly observable by the requester. In particular, our formulation significantly generalizes the budget-free online task pricing problems studied in prior work. We treat this problem as a multi-armed bandit problem, with each "arm" representing a potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a new algorithm, AgnosticZooming, which discretizes the contract space into a finite number of regions, effectively treating each region as a single arm. This discretization is adaptively refined, so that more promising regions of the contract space are eventually discretized more finely. We analyze this algorithm, showing that it achieves regret sublinear in the time horizon and substantially improves over non-adaptive discretization (which is the only competing approach in the literature). Our results advance the state of art on several different topics: the theory of crowdsourcing markets, principal-agent problems, multi-armed bandits, and dynamic pricing.
Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the task's requester, and … Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the task's requester, and may be adjusted based on the quality of the completed work, for example, through the use of "bonus" payments. In this paper, we study the requester's problem of dynamically adjusting quality-contingent payments for tasks. We consider a multi-round version of the well-known principal-agent model, whereby in each round a worker makes a strategic choice of the effort level which is not directly observable by the requester. In particular, our formulation significantly generalizes the budget-free online task pricing problems studied in prior work. We treat this problem as a multi-armed bandit problem, with each "arm" representing a potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a new algorithm, AgnosticZooming, which discretizes the contract space into a finite number of regions, effectively treating each region as a single arm. This discretization is adaptively refined, so that more promising regions of the contract space are eventually discretized more finely. We analyze this algorithm, showing that it achieves regret sublinear in the time horizon and substantially improves over non-adaptive discretization (which is the only competing approach in the literature). Our results advance the state of art on several different topics: the theory of crowdsourcing markets, principal-agent problems, multi-armed bandits, and dynamic pricing.
We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is … We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is widely adopted in practice for its simplicity, e.g., Amazon Mechanical Turk, although additional sophistication to pricing rule can enhance budget efficiency. With the goal of designing efficient and simple pricing rules, we study the impact of the following two design features in pricing policies: (i) personalization tailoring policy worker-by-worker and (ii) bonus payment to qualified task completion. In the Bayesian setting, where the only prior distribution of workers' profiles is available, we first study the Price of Agnosticism (PoA) that quantifies the utility gap between personalized and common pricing policies. We show that PoA is bounded within a constant factor under some mild conditions, and the impact of bonus is essential in common pricing. These analytic results imply that complex personalized pricing can be replaced by simple common pricing once it is equipped with a proper bonus payment. To provide insights on efficient common pricing, we then study the efficient mechanisms of bonus payment for several profile distribution regimes which may exist in practice. We provide primitive experiments on Amazon Mechanical Turk, which support our analytical findings.
We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is … We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is widely adopted in practice for its simplicity, e.g., Amazon Mechanical Turk, although additional sophistication to pricing rule can enhance budget efficiency. With the goal of designing efficient and simple pricing rules, we study the impact of the following two design features in pricing policies: (i) personalization tailoring policy worker-by-worker and (ii) bonus payment to qualified task completion. In the Bayesian setting, where the only prior distribution of workers' profiles is available, we first study the Price of Agnosticism (PoA) that quantifies the utility gap between personalized and common pricing policies. We show that PoA is bounded within a constant factor under some mild conditions, and the impact of bonus is essential in common pricing. These analytic results imply that complex personalized pricing can be replaced by simple common pricing once it is equipped with a proper bonus payment. To provide insights on efficient common pricing, we then study the efficient mechanisms of bonus payment for several profile distribution regimes which may exist in practice. We provide primitive experiments on Amazon Mechanical Turk, which support our analytical findings.
We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is … We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is widely adopted in practice for its simplicity, e.g., Amazon Mechanical Turk, although additional sophistication to pricing rule can enhance budget efficiency. With the goal of designing efficient and simple pricing rules, we study the impact of the following two design features in pricing policies: (i) personalization tailoring policy worker-by-worker and (ii) bonus payment to qualified task completion. In the Bayesian setting, where the only prior distribution of workers' profiles is available, we first study the Price of Agnosticism (PoA) that quantifies the utility gap between personalized and common pricing policies. We show that PoA is bounded within a constant factor under some mild conditions, and the impact of bonus is essential in common pricing. These analytic results imply that complex personalized pricing can be replaced by simple common pricing once it is equipped with a proper bonus payment. To provide insights on efficient common pricing, we then study the efficient mechanisms of bonus payment for several profile distribution regimes which may exist in practice. We provide primitive experiments on Amazon Mechanical Turk, which support our analytical findings[5].
We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is … We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is widely adopted in practice for its simplicity, e.g., Amazon Mechanical Turk, although additional sophistication to pricing rule can enhance budget efficiency. With the goal of designing efficient and simple pricing rules, we study the impact of the following two design features in pricing policies: (i) personalization tailoring policy worker-by-worker and (ii) bonus payment to qualified task completion. In the Bayesian setting, where the only prior distribution of workers' profiles is available, we first study the Price of Agnosticism (PoA) that quantifies the utility gap between personalized and common pricing policies. We show that PoA is bounded within a constant factor under some mild conditions, and the impact of bonus is essential in common pricing. These analytic results imply that complex personalized pricing can be replaced by simple common pricing once it is equipped with a proper bonus payment. To provide insights on efficient common pricing, we then study the efficient mechanisms of bonus payment for several profile distribution regimes which may exist in practice. We provide primitive experiments on Amazon Mechanical Turk, which support our analytical findings[5].
We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is … We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is widely adopted in practice for its simplicity, e.g., Amazon Mechanical Turk, although additional sophistication to pricing rule can enhance budget efficiency. With the goal of designing efficient and simple pricing rules, we study the impact of the following two design features in pricing policies: (i) personalization tailoring policy worker-by-worker and (ii) bonus payment to qualified task completion. In the Bayesian setting, where the only prior distribution of workers' profiles is available, we first study the Price of Agnosticism (PoA) that quantifies the utility gap between personalized and common pricing policies. We show that PoA is bounded within a constant factor under some mild conditions, and the impact of bonus is essential in common pricing. These analytic results imply that complex personalized pricing can be replaced by simple common pricing once it is equipped with a proper bonus payment. To provide insights on efficient common pricing, we then study the efficient mechanisms of bonus payment for several profile distribution regimes which may exist in practice. We provide primitive experiments on Amazon Mechanical Turk, which support our analytical findings[5].
The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of … The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible, and O(1)-approximation mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). The fact that in our mechanism the agents are not ordered according to their marginal value per cost allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present, for example, at most k agents can be selected. We obtain O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a p-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about nontrivial approximation guarantees in polynomial time, our results are, asymptotically, the best possible.
We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would … We study a class of procurement auctions with a budget constraint, where an auctioneer is interested in buying resources or services from a set of agents. Ideally, the auctioneer would like to select a subset of the resources so as to maximize his valuation function, without exceeding a given budget. As the resources are owned by strategic agents however, our overall goal is to design mechanisms that are truthful, budget-feasible, and obtain a good approximation to the optimal value. Budget-feasibility creates additional challenges, making several approaches inapplicable in this setting. Previous results on budget-feasible mechanisms have considered mostly monotone valuation functions. In this work, we mainly focus on symmetric submodular valuations, a prominent class of non-monotone submodular functions that includes cut functions. We begin first with a purely algorithmic result, obtaining a $\frac{2e}{e-1}$-approximation for maximizing symmetric submodular functions under a budget constraint. We view this as a standalone result of independent interest, as it is the best known factor achieved by a deterministic algorithm. We then proceed to propose truthful, budget feasible mechanisms (both deterministic and randomized), paying particular attention on the Budgeted Max Cut problem. Our results significantly improve the known approximation ratios for these objectives, while establishing polynomial running time for cases where only exponential mechanisms were known. At the heart of our approach lies an appropriate combination of local search algorithms with results for monotone submodular valuations, applied to the derived local optima.
We introduce a novel framework of Prophet Inequalities for combinatorial valuation functions. For a (non-monotone) submodular objective function over an arbitrary matroid feasibility constraint, we give an O(1)-competitive algorithm. For … We introduce a novel framework of Prophet Inequalities for combinatorial valuation functions. For a (non-monotone) submodular objective function over an arbitrary matroid feasibility constraint, we give an O(1)-competitive algorithm. For a monotone subadditive objective function over an arbitrary downward- closed feasibility constraint, we give an O(log n log2 r)- competitive algorithm (where r is the cardinality of the largest feasible subset).Inspired by the proof of our subadditive prophet inequality, we also obtain an O(log n · log2 r)-competitive algorithm for the Secretary Problem with a monotone subadditive objective function subject to an arbitrary downward-closed feasibility constraint. Even for the special case of a cardinality feasibility constraint, our algorithm circumvents an lower bound by Bateni, Hajiaghayi, and Zadimoghaddam [10] in a restricted query model.En route to our submodular prophet inequality, we prove a technical result of independent interest: we show a variant of the Correlation Gap Lemma [14, 1] for nonmonotone submodular functions.
In this paper, we obtain the tight approximation guarantees for budget-feasible mechanisms with an additive buyer. We propose a new simple randomized mechanism with an approximation ratio of $2$, improving … In this paper, we obtain the tight approximation guarantees for budget-feasible mechanisms with an additive buyer. We propose a new simple randomized mechanism with an approximation ratio of $2$, improving the previous best known result of $3$. Our bound is tight with respect to either the optimal offline benchmark or its fractional relaxation. We also present a simple deterministic mechanism with the tight approximation guarantee of $3$ against the fractional optimum, improving the best known result of $(\sqrt2 + 2)$ against the weaker integral benchmark.
We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is … We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is widely adopted in practice for its simplicity, e.g., Amazon Mechanical Turk, although additional sophistication to pricing rule can enhance budget efficiency. With the goal of designing efficient and simple pricing rules, we study the impact of the following two design features in pricing policies: (i) personalization tailoring policy worker-by-worker and (ii) bonus payment to qualified task completion. In the Bayesian setting, where the only prior distribution of workers' profiles is available, we first study the Price of Agnosticism (PoA) that quantifies the utility gap between personalized and common pricing policies. We show that PoA is bounded within a constant factor under some mild conditions, and the impact of bonus is essential in common pricing. These analytic results imply that complex personalized pricing can be replaced by simple common pricing once it is equipped with a proper bonus payment. To provide insights on efficient common pricing, we then study the efficient mechanisms of bonus payment for several profile distribution regimes which may exist in practice. We provide primitive experiments on Amazon Mechanical Turk, which support our analytical findings[5].
In this paper, we show a tight approximation guarantee for budget-feasible mechanisms with an additive buyer. We propose a new simple randomized mechanism with approximation ratio of $2$, improving the … In this paper, we show a tight approximation guarantee for budget-feasible mechanisms with an additive buyer. We propose a new simple randomized mechanism with approximation ratio of $2$, improving the previous best known result of $3$. Our bound is tight with respect to either the optimal offline benchmark, or its fractional relaxation. We also present a simple deterministic mechanism with the tight approximation guarantee of $3$ against the fractional optimum, improving the best known result of $(2+ \sqrt{2})$ for the weaker integral benchmark.
The greedy algorithm for monotone submodular function maximization subject to cardinality constraint is guaranteed to approximate the optimal solution to within a $1-1/e$ factor. Although it is well known that … The greedy algorithm for monotone submodular function maximization subject to cardinality constraint is guaranteed to approximate the optimal solution to within a $1-1/e$ factor. Although it is well known that this guarantee is essentially tight in the worst case -- for greedy and in fact any efficient algorithm, experiments show that greedy performs better in practice. We observe that for many applications in practice, the empirical distribution of the budgets (i.e., cardinality constraints) is supported on a wide range, and moreover, all the existing hardness results in theory break under a large perturbation of the budget. To understand the effect of the budget from both algorithmic and hardness perspectives, we introduce a new notion of budget smoothed analysis. We prove that greedy is optimal for every budget distribution, and we give a characterization for the worst-case submodular functions. Based on these results, we show that on the algorithmic side, under realistic budget distributions, greedy and related algorithms enjoy provably better approximation guarantees, that hold even for worst-case functions, and on the hardness side, there exist hard functions that are fairly robust to all the budget distributions.
We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is … We consider a simple form of pricing for a crowdsourcing system, where pricing policy is published a priori, and workers then decide their task acceptance. Such a pricing form is widely adopted in practice for its simplicity, e.g., Amazon Mechanical Turk, although additional sophistication to pricing rule can enhance budget efficiency. With the goal of designing efficient and simple pricing rules, we study the impact of the following two design features in pricing policies: (i) personalization tailoring policy worker-by-worker and (ii) bonus payment to qualified task completion. In the Bayesian setting, where the only prior distribution of workers' profiles is available, we first study the Price of Agnosticism (PoA) that quantifies the utility gap between personalized and common pricing policies. We show that PoA is bounded within a constant factor under some mild conditions, and the impact of bonus is essential in common pricing. These analytic results imply that complex personalized pricing can be replaced by simple common pricing once it is equipped with a proper bonus payment. To provide insights on efficient common pricing, we then study the efficient mechanisms of bonus payment for several profile distribution regimes which may exist in practice. We provide primitive experiments on Amazon Mechanical Turk, which support our analytical findings.
In this article, we show a tight approximation guarantee for budget-feasible mechanisms with an additive buyer. We propose a new simple randomized mechanism with approximation ratio of 2, improving the … In this article, we show a tight approximation guarantee for budget-feasible mechanisms with an additive buyer. We propose a new simple randomized mechanism with approximation ratio of 2, improving the previous best known result of 3. Our bound is tight with respect to either the optimal offline benchmark or its fractional relaxation. We also present a simple deterministic mechanism with the tight approximation guarantee of 3 against the fractional optimum, improving the best known result of (2+ √ 2) for the weaker integral benchmark.
We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the … We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade, several strategyproof budget-feasible procurement auctions have been proposed, aiming to maximize the value of the buyer, while eliciting each seller's true cost for providing their service. These solutions predominantly take the form of randomized sealed-bid auctions: they ask the sellers to report their private costs and then use randomization to determine which subset of services will be procured and how much each of the chosen providers will be paid, ensuring that the total payment does not exceed budget. Our main result in this paper is a novel method for designing budget-feasible auctions, leading to solutions that outperform the previously proposed auctions in multiple ways. First, our solutions take the form of descending clock auctions, and thus satisfy a list of properties, such as obvious strategyproofness, group strategyproofness, transparency, and unconditional winner privacy; this makes these auctions much more likely to be used in practice. Second, in contrast to previous results that heavily depend on randomization, our auctions are deterministic. As a result, we provide an affirmative answer to one of the main open questions in this literature, asking whether a deterministic strategyproof auction can achieve a constant approximation when the buyer's valuation function is submodular over the set of services. In addition, we also provide the first deterministic budget-feasible auction that matches the approximation bound of the best-known randomized auction for the class of subadditive valuations. Finally, using our method, we improve the best-known approximation factor for monotone submodular valuations, which has been the focus of most of the prior work.
We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism … We study the problem of a budget limited buyer who wants to buy a set of items, each from a different seller, to maximize her value. The budget feasible mechanism design problem requires the design a mechanism that incentivizes the sellers to truthfully report their cost and maximizes the buyer’s value while guaranteeing that the total payment does not exceed her budget. Such budget feasible mechanisms can model a buyer in a crowdsourcing market interested in recruiting a set of workers (sellers) to accomplish a task for her. This budget feasible mechanism design problem was introduced by Singer in 2010. We consider the general case where the buyer’s valuation is a monotone submodular function. There are a number of truthful mechanisms known for this problem. We offer two general frameworks for simple mechanisms, and by combining these frameworks, we significantly improve on the best known results, while also simplifying the analysis. For example, we improve the approximation guarantee for the general monotone submodular case from 7.91 to 5 and for the case of large markets (where each individual item has negligible value) from 3 to 2.58. More generally, given an r approximation algorithm for the optimization problem (ignoring incentives), our mechanism is a r + 1 approximation mechanism for large markets, an improvement from 2 r 2 . We also provide a mechanism without the large market assumption, where we achieve a 4 r + 1 approximation guarantee. We also show how our results can be used for the problem of a principal hiring in a Crowdsourcing Market to select a set of tasks subject to a total budget.
Many websites encourage user participation via the use of virtual rewards like badges. While badges typically have no explicit value, they act as symbols of social status within a community. … Many websites encourage user participation via the use of virtual rewards like badges. While badges typically have no explicit value, they act as symbols of social status within a community. In this paper, we study how to design virtual incentive mechanisms that maximize total contributions to a website when users are motivated by social status. We consider a game-theoretic model where users exert costly effort to make contributions and, in return, are awarded with badges. The value of a badge is determined endogenously by the number of users who earn an equal or higher badge; as more users earn a particular badge, the value of that badge diminishes for all users. We show that among all possible mechanisms for assigning status-driven rewards, the optimal mechanism is a leaderboard with a cutoff: users that contribute less than a certain threshold receive nothing while the remaining are ranked by contribution. We next study the necessary features of approximately optimal mechanisms and find that approximate optimality is influenced by the the convexity of status valuations. When status valuations are concave, any approximately optimal mechanism must contain a coarse status partition, i.e. a partition of users into status classes whose size will grow as the population grows. Conversely when status valuations are convex, we prove that fine partitioning, that is a partition of users into status classes whose size stays constant as the population grows, is necessary for approximate optimality.
We consider the problem of maximizing a non-negative submodular set function f:2N -> RR+ over a ground set N subject to a variety of packing type constraints including (multiple) matroid … We consider the problem of maximizing a non-negative submodular set function f:2N -> RR+ over a ground set N subject to a variety of packing type constraints including (multiple) matroid constraints, knapsack constraints, and their intersections. In this paper we develop a general framework that allows us to derive a number of new results, in particular when f may be a non-monotone function. Our algorithms are based on (approximately) solving the multilinear extension F of f [5] over a polytope P that represents the constraints, and then effectively rounding the fractional solution. Although this approach has been used quite successfully in some settings [6, 22, 24, 13, 3], it has been limited in some important ways. We overcome these limitations as follows.
For revenue and welfare maximization in single-dimensional Bayesian settings, Chawla et al. (STOC10) recently showed that sequential posted-price mechanisms (SPMs), though simple in form, can perform surprisingly well compared to … For revenue and welfare maximization in single-dimensional Bayesian settings, Chawla et al. (STOC10) recently showed that sequential posted-price mechanisms (SPMs), though simple in form, can perform surprisingly well compared to the optimal mechanisms. In this paper, we give a theoretical explanation of this fact, based on a connection to the notion of correlation gap. Loosely speaking, for auction environments with matroid constraints, we can relate the performance of a mechanism to the expectation of a monotone submodular function over a random set. This random set corresponds to the winner set for the optimal mechanism, which is highly correlated, and corresponds to certain demand set for SPMs, which is independent. The notion of correlation gap of Agrawal et al.\ (SODA10) quantifies how much we {}"lose" in the expectation of the function by ignoring correlation in the random set, and hence bounds our loss in using certain SPM instead of the optimal mechanism. Furthermore, the correlation gap of a monotone and submodular function is known to be small, and it follows that certain SPM can approximate the optimal mechanism by a good constant factor. Exploiting this connection, we give tight analysis of a greedy-based SPM of Chawla et al.\ for several environments. In particular, we show that it gives an $e/(e-1)$-approximation for matroid environments, gives asymptotically a $1/(1-1/\sqrt{2\pi k})$-approximation for the important sub-case of $k$-unit auctions, and gives a $(p+1)$-approximation for environments with $p$-independent set system constraints.
In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk mturk, ClickWorker clickworker, CrowdFlower crowdflower. In these markets, there … In this paper we consider a mechanism design problem in the context of large-scale crowdsourcing markets such as Amazon's Mechanical Turk mturk, ClickWorker clickworker, CrowdFlower crowdflower. In these markets, there is a requester who wants to hire workers to accomplish some tasks. Each worker is assumed to give some utility to the requester on getting hired. Moreover each worker has a minimum cost that he wants to get paid for getting hired. This minimum cost is assumed to be private information of the workers. The question then is -- if the requester has a limited budget, how to design a direct revelation mechanism that picks the right set of workers to hire in order to maximize the requester's utility? We note that although the previous work (Singer (2010) chen et al. (2011)) has studied this problem, a crucial difference in which we deviate from earlier work is the notion of large-scale markets that we introduce in our model. Without the large market assumption, it is known that no mechanism can achieve a competitive ratio better than 0.414 and 0.5 for deterministic and randomized mechanisms respectively (while the best known deterministic and randomized mechanisms achieve an approximation ratio of 0.292 and 0.33 respectively). In this paper, we design a budget-feasible mechanism for large markets that achieves a competitive ratio of 1 - 1/e ≃ 0.63. Our mechanism can be seen as a generalization of an alternate way to look at the proportional share mechanism, which is used in all the previous works so far on this problem. Interestingly, we can also show that our mechanism is optimal by showing that no truthful mechanism can achieve a factor better than 1 - 1/e, thus, fully resolving this setting. Finally we consider the more general case of submodular utility functions and give new and improved mechanisms for the case when the market is large.
We consider prior-free auctions for revenue and welfare maximization when agents have a common budget. The abstract environments we consider are ones where there is a downward-closed and symmetric feasibility … We consider prior-free auctions for revenue and welfare maximization when agents have a common budget. The abstract environments we consider are ones where there is a downward-closed and symmetric feasibility constraint on the probabilities of service of the agents. These environments include position auctions where slots with decreasing click-through rates are auctioned to advertisers. We generalize and characterize the envy-free benchmark from Hartline and Yan [2011] to settings with budgets and characterize the optimal envy-free outcomes for both welfare and revenue. We give prior-free mechanisms that approximate these benchmarks. A building block in our mechanism is a clinching auction for position auction environments. This auction is a generalization of the multi-unit clinching auction of Dobzinski et al. [2008] and a special case of the polyhedral clinching auction of Goel et al. [2012]. For welfare maximization, we show that this clinching auction is a good approximation to the envy-free optimal welfare for position auction environments. For profit maximization, we generalize the random sampling profit extraction auction from Fiat et al. [2002] for digital goods to give a 10.0-approximation to the envy-free optimal revenue in symmetric, downward-closed environments. Even without budgets this revenue maximization question is of interest and we obtain an improved approximation bound of 7.5 (from 30.4 by Ha and Hartline [2012]).
We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, … We study a novel class of mechanism design problems in which the outcomes are constrained by the payments. This basic class of mechanism design problems captures many common economic situations, and yet it has not been studied, to our knowledge, in the past. We focus on the case of procurement auctions in which sellers have private costs, and the auctioneer aims to maximize a utility function on subsets of items, under the constraint that the sum of the payments provided by the mechanism does not exceed a given budget. Standard mechanism design ideas such as the VCG mechanism and its variants are not applicable here. We show that, for general functions, the budget constraint can render mechanisms arbitrarily bad in terms of the utility of the buyer. However, our main result shows that for the important class of sub modular functions, a bounded approximation ratio is achievable. Better approximation results are obtained for subclasses of the sub modular functions. We explore the space of budget feasible mechanisms in other domains and give a characterization under more restricted conditions.
Budget feasible mechanism design studies procurement combinatorial auctions in the sellers have private costs to produce items, and the buyer (auctioneer) aims to maximize a social valuation function on subsets … Budget feasible mechanism design studies procurement combinatorial auctions in the sellers have private costs to produce items, and the buyer (auctioneer) aims to maximize a social valuation function on subsets of items, under the budget constraint on the total payment. One of the most important questions in the field is which valuation domains admit truthful budget feasible mechanisms with 'small' approximations (compared to the social optimum)? Singer [35] showed that additive and submodular functions have a constant approximation mechanism. Recently, Dobzinski, Papadimitriou, and Singer [20] gave an O(log2n) approximation mechanism for subadditive functions; further, they remarked that: A fundamental question is whether, regardless of computational constraints, a constant-factor budget feasible mechanism exists for subadditive In this paper, we address this question from two viewpoints: prior-free worst case analysis and Bayesian analysis, are two standard approaches from computer science and economics, respectively. - For the prior-free framework, we use a linear program (LP) that describes the fractional cover of the valuation function; the LP is also connected to the concept of approximate core in cooperative game theory. We provide a mechanism for subadditive functions whose approximation is O(I), via the worst case integrality gap I of this LP. This implies an O(log n)-approximation for subadditive valuations, O(1)-approximation for XOS valuations, as well as for valuations having a constant integrality gap. XOS valuations are an important class of functions and lie between the submodular and the subadditive classes of valuations. We further give another polynomial time O(log n/(log log n)) sub-logarithmic approximation mechanism for subadditive functions. Both of our mechanisms improve the best known approximation ratio O(log2 n). - For the Bayesian framework, we provide a constant approximation mechanism for all subadditive functions, using the above prior-free mechanism for XOS valuations as a subroutine. Our mechanism allows correlations in the distribution of private information and is universally truthful.
Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget … Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget feasible mechanisms for monotone submodular functions: We give a randomized mechanism with an approximation ratio of 7.91 (improving on the previous best-known result 233.83), and a deterministic mechanism with an approximation ratio of 8.34. We also study the knapsack problem, which is a special submodular function, give a 2 + √2 approximation deterministic mechanism (improving on the previous best-known result 5), and a 3 approximation randomized mechanism. We provide similar results for an extended knapsack problem with heterogeneous items, where items are divided into groups and one can pick at most one item from each group.Finally we show a lower bound of 1 + √2 for the approximation ratio of deterministic mechanisms and 2 for randomized mechanisms for knapsack, as well as the general monotone submodular functions. Our lower bounds are unconditional, and do not rely on any computational or complexity assumptions.
We study the causal effects of financial incentives on the quality of crowdwork. We focus on performance-based payments (PBPs), bonus payments awarded to workers for producing high quality work. We … We study the causal effects of financial incentives on the quality of crowdwork. We focus on performance-based payments (PBPs), bonus payments awarded to workers for producing high quality work. We design and run randomized behavioral experiments on the popular crowdsourcing platform Amazon Mechanical Turk with the goal of understanding when, where, and why PBPs help, identifying properties of the payment, payment structure, and the task itself that make them most effective. We provide examples of tasks for which PBPs do improve quality. For such tasks, the effectiveness of PBPs is not too sensitive to the threshold for quality required to receive the bonus, while the magnitude of the bonus must be large enough to make the reward salient. We also present examples of tasks for which PBPs do not improve quality. Our results suggest that for PBPs to improve quality, the task must be effort-responsive: the task must allow workers to produce higher quality work by exerting more effort. We also give a simple method to determine if a task is effort-responsive a priori. Furthermore, our experiments suggest that all payments on Mechanical Turk are, to some degree, implicitly performance-based in that workers believe their work may be rejected if their performance is sufficiently poor. Finally, we propose a new model of worker behavior that extends the standard principal-agent model from economics to include a worker's subjective beliefs about his likelihood of being paid, and show that the predictions of this model are in line with our experimental findings. This model may be useful as a foundation for theoretical studies of incentives in crowdsourcing markets.
We present a general framework for approximately reducing the mechanism design problem for multiple agents to single agent subproblems in the context of Bayesian combinatorial auctions. Our framework can be … We present a general framework for approximately reducing the mechanism design problem for multiple agents to single agent subproblems in the context of Bayesian combinatorial auctions. Our framework can be applied to any setting which roughly satisfies the following assumptions: (i) agents' types are distributed independently (not necessarily identically), (ii) objective function is additively separable over the agents, and (iii) there are no interagent constraints except for the supply constraints (i.e., that the total allocation of each item should not exceed the supply). Our framework is general in the sense that it makes no direct assumption about agents' valuations, type distributions, or single agent constraints (e.g., budget, incentive compatibility, etc.). We present two generic multiagent mechanisms which use single agent mechanisms as black boxes. If an $\alpha$-approximate single agent mechanism is available for each agent, and assuming no agent ever demands more than $\frac{1}{k}$ of all units of each item, our generic multiagent mechanisms are $\gamma_{k}\alpha$-approximations of the optimal multiagent mechanism, where $\gamma_{k}$ is a constant which is at least $1-\frac{1}{\sqrt{k+3}}$. As a byproduct of our construction, we present a generalization of prophet inequalities where both gambler and prophet are allowed to pick $k$ numbers each to receive a reward equal to their sum. Finally, we use our framework to obtain multiagent mechanisms with improved approximation factor for several settings from the literature.
We consider prior-free auctions for revenue and welfare maximization when agents have a common budget. The abstract environments we consider are ones where there is a downward-closed and symmetric feasibility … We consider prior-free auctions for revenue and welfare maximization when agents have a common budget. The abstract environments we consider are ones where there is a downward-closed and symmetric feasibility constraint on the probabilities of service of the agents. These environments include position auctions where slots with decreasing click-through rates are auctioned to advertisers. We generalize and characterize the envy-free benchmark from Hartline and Yan [2011] to settings with budgets and characterize the optimal envy-free outcomes for both welfare and revenue. We give prior-free mechanisms that approximate these benchmarks. A building block in our mechanism is a clinching auction for position auction environments. This auction is a generalization of the multi-unit clinching auction of Dobzinski et al. [2008] and a special case of the polyhedral clinching auction of Goel et al. [2012]. For welfare maximization, we show that this clinching auction is a good approximation to the envy-free optimal welfare for position auction environments. For profit maximization, we generalize the random sampling profit extraction auction from Fiat et al. [2002] for digital goods to give a 10.0-approximation to the envy-free optimal revenue in symmetric, downward-closed environments. Even without budgets this revenue maximization question is of interest and we obtain an improved approximation bound of 7.5 (from 30.4 by Ha and Hartline [2012]).
Budget feasible mechanism design studies procurement combinatorial auctions where the sellers have private costs to produce items, and the buyer(auctioneer) aims to maximize a social valuation function on subsets of … Budget feasible mechanism design studies procurement combinatorial auctions where the sellers have private costs to produce items, and the buyer(auctioneer) aims to maximize a social valuation function on subsets of items, under the budget constraint on the total payment. One of the most important questions in the field is "which valuation domains admit truthful budget feasible mechanisms with `small' approximations (compared to the social optimum)?" Singer showed that additive and submodular functions have such constant approximations. Recently, Dobzinski, Papadimitriou, and Singer gave an O(log^2 n)-approximation mechanism for subadditive functions; they also remarked that: "A fundamental question is whether, regardless of computational constraints, a constant-factor budget feasible mechanism exists for subadditive functions." We address this question from two viewpoints: prior-free worst case analysis and Bayesian analysis. For the prior-free framework, we use an LP that describes the fractional cover of the valuation function; it is also connected to the concept of approximate core in cooperative game theory. We provide an O(I)-approximation mechanism for subadditive functions, via the worst case integrality gap I of LP. This implies an O(log n)-approximation for subadditive valuations, O(1)-approximation for XOS valuations, and for valuations with a constant I. XOS valuations are an important class of functions that lie between submodular and subadditive classes. We give another polynomial time O(log n/loglog n) sub-logarithmic approximation mechanism for subadditive valuations. For the Bayesian framework, we provide a constant approximation mechanism for all subadditive functions, using the above prior-free mechanism for XOS valuations as a subroutine. Our mechanism allows correlations in the distribution of private information and is universally truthful.