THE COLE-HOPF AND MIURA TRANSFORMATIONS REVISITED

Type: Book-Chapter

Publication Date: 2000-11-01

Citations: 10

DOI: https://doi.org/10.1142/9789812792167_0016

Abstract

Mathematical Physics and Stochastic Analysis, pp. 198-214 (2000) No AccessTHE COLE-HOPF AND MIURA TRANSFORMATIONS REVISITEDFRITZ GESZTESY and HELGE HOLDENFRITZ GESZTESYDepartment of Mathematics, University of Missouri, Columbia, MO 65211, USAhttp://www.math.missouri.edu/people/fgesztesy.html and HELGE HOLDENDepartment of Mathematical Sciences, Norwegian University of Science and Technology, N–7491 Trondheim, Norwayhttp://www.math.ntnu.no/~holden/https://doi.org/10.1142/9789812792167_0016Cited by:4 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail Abstract: An elementary yet remarkable similarity between the Cole-Hopf transformation relating the Burgers and heat equation and Miura's transformation connecting the KdV and mKdV equations is studied in detail. In the special (1 + 1)-dimensional case, our considerations apply to the entire hierarchy of Burgers evolution equations. Dedication: Dedicated with great pleasure to Ludwig Streit on the occasion of his 60th birthday. FiguresReferencesRelatedDetailsCited By 4Analogue of the Cole-Hopf transform for the incompressible Navier–Stokes equations and its applicationKoji Ohkitani1 March 2017 | Journal of Turbulence, Vol. 18, No. 5Bäcklund transformationsV. V. Zharinov6 January 2017 | Theoretical and Mathematical Physics, Vol. 189, No. 3О преобразовании БеклундаВиктор Викторович Жаринов and Victor Victorovich Zharinov1 Jan 2016 | Теоретическая и математическая физика, Vol. 189, No. 3Numerical study on comparison of Navier-Stokes and Burgers equationsKoji Ohkitani and Mark Dowker30 May 2012 | Physics of Fluids, Vol. 24, No. 5 Mathematical Physics and Stochastic AnalysisMetrics History PDF download

Locations

  • arXiv (Cornell University) - View - PDF
  • WORLD SCIENTIFIC eBooks - View

Similar Works

Action Title Year Authors
+ The Cole-Hopf and Miura transformations revisited 1998 Fritz Gesztesy
Helge Holden
+ BURGERS EQUATION AND KOLMOGOROV–PETROVSKY–PISKUNOV EQUATION ON MANIFOLDS 2011 S. E. Matskevich
+ The generalized Cole–Hopf transformation for a generalized Burgers–Fisher equation with spatiotemporal variable coefficients 2021 Yadong Shang
Quting Chen
+ Heinz Hopf 1972 Peter J. Hilton
+ Burgers' Equation 1999
+ A generalized Cole-Hopf transformation for a two-dimensional burgers equation with a variable coefficient 2012 B. Mayil Vaganan
M. Senthilkumaran
T. Shanmuga Priya
+ Suspension Theorems and the Generalized Hopf Invariant 1951 P. J. Hilton
+ A modification of the Kupka-Smale theorem and smooth invariant manifolds of dynamical systems 1979 H. G. Bothe
+ Complex Dynamics 2020 Shrihari Sridharan
Kaushal Verma
+ PDF Chat Preface: Diffusion on fractals and non-linear dynamics 2017 Kurt Falk
Marc Keßeböhmer
Tobias Henrik Oertel-Jäger
Jens D. M. Rademacher
Tony Samuel
+ PDF Chat SOLVING THE KPZ EQUATION 2013 Martin Hairer
+ Stochastic Burgers PDEs with random coefficients and a generalization of the Cole–Hopf transformation 2013 Nikolaos Englezos
Nikolaos E. Frangos
Xanthi-Isidora Kartala
Athanasios N. Yannacopoulos
+ Cole-Hopf Transformations for Higher Dimensional Burgers Equations With Variable Coefficients 2012 B. Mayil Vaganan
+ PDF Chat Inertial Manifolds via Spatial Averaging Revisited 2022 Anna Kostianko
Xinhua Li
Chunyou Sun
Sergey Zelik
+ A comparison between Cole–Hopf transformation and the decomposition method for solving Burgers’ equations 2005 Alice Gorguis
+ APPENDIX: Inertial Manifolds and Navier–Stokes Equations 1995
+ Systems of Riemann invariants: stochastic perturbation, viscosity and Hamilton-Jacobi approaches 2015 R. Olga
+ Анализ напряженно-деформированного состояния неоднородной пластической полосы 2012 В. Л. Дильман
А. И. Носачева
В. Л. Дильман
А. И. Носачева
+ PDF Chat Hopf Differentials and Smoothing Sobolev Homeomorphisms 2011 Tadeusz Iwaniec
Leonid V. Kovalev
Jani Onninen
+ PDF Chat THERMODYNAMIC FORMALISM METHODS IN ONE-DIMENSIONAL REAL AND COMPLEX DYNAMICS 2019 Feliks Przytycki