Projects
Reading
People
Chat
SU\G
(đž)
/K·U
Projects
Reading
People
Chat
Sign Up
Sign In
Light
Dark
System
Covariance matrix estimation and variable selection in high dimension
Mu Cai
Type:
Article
Publication Date:
2013-01-01
Citations:
0
Share
Similar Works
Action
Title
Year
Authors
+
optimal procedures in high-dimensional variable selection
2013
Qi Zhang
+
PDF
Chat
A scalable sparse Cholesky based approach for learning high-dimensional covariance matrices in ordered data
2019
Kshitij Khare
SangâYun Oh
Syed M Rahman
Bala Rajaratnam
+
Sparse covariance thresholding for high-dimensional variable selection
2010
X. Jessie Jeng And Z. John Daye
+
PDF
Chat
Sparse covariance thresholding for high-dimensional variable selection
2011
X. Jessie Jeng
Z. John Daye
+
Sparse covariance thresholding for high-dimensional variable selection
2010
X. Jessie Jeng And Z. John Daye
+
Data, Sparsity, and Regularization
2013
Mohsen Pourahmadi
+
PDF
Chat
Discussion of âCorrelated variables in regression: Clustering and sparse estimationâ by Peter BĂŒhlmann, Philipp RĂŒtimann, Sara van de Geer and Cun-Hui Zhang
2013
Rajen D. Shah
Richard J. Samworth
+
New estimation methods for high dimensional inverse covariance matrices
2016
Vahe Avagyan
+
PDF
Chat
Penalized Sparse Covariance Regression with High Dimensional Covariates
2024
Yuan Gao
Zhiyuan Zhang
Zhanrui Cai
Xuening Zhu
Tao Zou
Hansheng Wang
+
PDF
Chat
Correlated variables in regression: Clustering and sparse estimation
2013
Peter BĂŒhlmann
Philipp RĂŒtimann
Sara van de Geer
CunâHui Zhang
+
Efficient Clustering of Correlated Variables and Variable Selection in High-Dimensional Linear Models
2016
Niharika Gauraha
Swapan K. Parui
+
Sparse PCA with False Discovery Rate Controlled Variable Selection
2024
Jasin Machkour
Arnaud Breloy
Michael Muma
Daniel P. Palomar
Frédéric Pascal
+
Sparse PCA with False Discovery Rate Controlled Variable Selection
2024
Jasin Machkour
Arnaud Breloy
Michael Muma
Daniel P. Palomar
Frédéric Pascal
+
PDF
Chat
Sparse Regression by Projection and Sparse Discriminant Analysis
2014
Xin Qi
Ruiyan Luo
Raymond J. Carroll
Hongyu Zhao
+
Sparse Reduced-Rank Regression
2022
Gregory C. Reinsel
Raja P. Velu
Kun Chen
+
Sparse regression with highly correlated predictors
2015
Behrooz Ghorbani
ĂzgĂŒr Yılmaz
+
High-dimensional covariance matrix estimation
2020
Clifford Lam
+
Sparse regression with highly correlated predictors.
2015
Behrooz Ghorbani
ĂzgĂŒr Yılmaz
+
PDF
Chat
Canonical Correlation Analysis as Reduced Rank Regression in High Dimensions
2024
Claire Donnat
Elena Tuzhilina
+
High-Dimensional Block Diagonal Covariance Structure Detection Using Singular Vectors
2022
Jan O. Bauer
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (9)
Action
Title
Year
Authors
+
PDF
Chat
On the distribution of the largest eigenvalue in principal components analysis
2001
Iain M. Johnstone
+
PDF
Chat
Adaptive Thresholding for Sparse Covariance Matrix Estimation
2011
Tommaso Cai
Weidong Liu
+
PDF
Chat
The Adaptive Lasso and Its Oracle Properties
2006
Hui Zou
+
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
2001
Jianqing Fan
Runze Li
+
Regression Shrinkage and Selection Via the Lasso
1996
Robert Tibshirani
+
On Model Selection Consistency of Lasso
2006
Peng Zhao
Bin Yu
+
PDF
Chat
Approximating the Inverse of Banded Matrices by Banded Matrices with Applications to Probability and Statistics
2012
Peter J. Bickel
Marko Lindner
+
PDF
Chat
Optimal rates of convergence for covariance matrix estimation
2010
Tommaso Cai
Cun-Hui Zhang
Harrison H. Zhou
+
Optimal rates of convergence for sparse covariance matrix estimation
2012
Tommaso Cai
Harrison H. Zhou