Weakly coupled bound states in quantum waveguides

Type: Article

Publication Date: 1997-01-01

Citations: 184

DOI: https://doi.org/10.1090/s0002-9939-97-03726-x

Abstract

We study the eigenvalue spectrum of Dirichlet Laplacians which model quantum waveguides associated with tubular regions outside of a bounded domain. Intuitively, our principal new result in two dimensions asserts that any domain $\Omega$ obtained by adding an arbitrarily small "bump" to the tube $\Omega _{0}=\mathbb {R}\times (0,1)$ (i.e., $\Omega \supsetneqq \Omega _{0}$, $\Omega \subset \mathbb {R}^{2}$ open and connected, $\Omega =\Omega _{0}$ outside a bounded region) produces at least one positive eigenvalue below the essential spectrum $[\pi ^{2},\infty )$ of the Dirichlet Laplacian $-\Delta ^{D}_{\Omega }$. For $|\Omega \backslash \Omega _{0}|$ sufficiently small ($| . |$ abbreviating Lebesgue measure), we prove uniqueness of the ground state $E_{\Omega }$ of $-\Delta ^{D}_{\Omega }$ and derive the "weak coupling" result $E_{\Omega }=\pi ^{2}-\pi ^{4}|\Omega \backslash \Omega _{0}|^{2} +O(|\Omega \backslash \Omega _{0}|^{3})$ using a Birman-Schwinger-type analysis. As a corollary of these results we obtain the following surprising fact: Starting from the tube $\Omega _{0}$ with Dirichlet boundary conditions at $\partial \Omega _{0}$, replace the Dirichlet condition by a Neumann boundary condition on an arbitrarily small segment $(a,b)\times \{1\}$, $a<b$, of $\partial \Omega _{0}$. If $H(a,b)$ denotes the resulting Laplace operator in $L^{2}(\Omega _{0})$, then $H(a,b)$ has a discrete eigenvalue in $[\pi ^{2} /4,\pi ^{2})$ no matter how small $|b-a|>0$ is.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window 1996 Pavel Exner
Semjon Vugalter
+ Asymptotic estimates for bound states in quantum waveguides coupled laterally through a narrow window 1996 Pavel Exner
Semjon Vugalter
+ Criteria for the Absence and Existence of Bounded Solutions at the Threshold Frequency in a Junction of Quantum Waveguides 2017 F. L. Bakharev
С. А. Назаров
+ Criteria for the Absence and Existence of Bounded Solutions at the Threshold Frequency in a Junction of Quantum Waveguides 2017 F. L. Bakharev
С. А. Назаров
+ Existence of bound states in quantum waveguides under weak conditions 1995 Walter Renger
W. Bulla
+ Influence of the bound states in the Neumann Laplacian in a thin waveguide 2017 Carlos R. Mamani
Alessandra A. Verri
+ Spectral Asymptotics for Waveguides with Perturbed Periodic Twisting 2014 Georgi Raikov
+ On the spectrum of sets made of cores and tubes 2023 Francesca Bianchi
Lorenzo Brasco
Roberto Ognibene
+ Criteria for the absence and existence of bounded solutions at the threshold frequency in a junction of quantum waveguides 2021 F. L. Bakharev
С. А. Назаров
+ Spectral Asymptotics for Waveguides with Perturbed Periodic Twisting 2014 Georgi Raikov
+ LIFSHITZ ASYMPTOTICS AND LOCALIZATION FOR RANDOM QUANTUM WAVEGUIDES 2000 Frank Kleespies
Peter Stollmann
+ On the breathing of spectral bands in periodic quantum waveguides with inflating resonators 2024 Lucas Chesnel
С. А. Назаров
+ PDF Chat Spectral and localization properties of the Dirichlet wave guide with two concentric Neumann discs 2011 Hatem Najar
O. Olendski
+ Bound states in a locally deformed waveguide: the critical case 1996 Pavel Exner
Semjon Vugalter
+ Bound states in quantum waveguides of a slowly decaying curvature 1993 Pavel Exner
+ Scattering in twisted waveguides 2011 Philippe Briet
Hynek Kovařík
Georgi Raikov
+ Scattering in twisted waveguides 2011 Philippe Briet
Hynek Kovařík
Georgi Raikov
+ Graph-like asymptotics for the Dirichlet Laplacian in connected tubular domains 2011 Claudio Cacciapuoti
+ Bound states in twisting tubes 1992 Jared V. Goldstone
R. L. Jaffe
+ PDF Chat Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case 2005 Olaf Post

Works That Cite This (174)

Action Title Year Authors
+ PDF Chat Waveguide with non-periodically alternating Dirichlet and Robin conditions: homogenization and asymptotics 2012 D. I. Borisov
Renata Bunoiu
Giuseppe Cardone
+ PDF Chat Resonances near thresholds in slightly twisted waveguides 2018 Vincent Bruneau
Pablo Miranda
Nicolas Popoff
+ PDF Chat Асимптотическое поведение собственных значений оператора Лапласа в бесконечных цилиндрах, возмущенных поперечными растяжениями 2007 V. V. Grushin
V. V. Grushin
+ Weakly coupled bound state of 2-D Schrödinger operator with potential-measure 2014 Sylwia Kondej
Vladimir Lotoreichik
+ PDF Chat Bound states of weakly deformed soft waveguides 2024 Pavel Exner
Sylwia Kondej
Vladimir Lotoreichik
+ PDF Chat Homogenization of the planar waveguide with frequently alternating boundary conditions 2009 D. I. Borisov
Giuseppe Cardone
+ Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows 2011 D. I. Borisov
Renata Bunoiu
Giuseppe Cardone
+ PDF Chat WAVEGUIDES COUPLED THROUGH A SEMITRANSPARENT BARRIER: A BIRMAN–SCHWINGER ANALYSIS 2001 Pavel Exner
David Krejčiřı́k
+ Two interacting particles in deformed nanolayer: discrete spectrum and particle storage 2012 С. И. Попов
Maxim Gavrilov
I. Yu. Popov
+ Asymptotic behavior of eigenvalues of the Laplacian on a thin domain under the mixed boundary condition 2016 Kazuhiro Kurata
Shuichi Jimbo