Sums of Three or More Primes

Type: Article

Publication Date: 1997-01-01

Citations: 5

DOI: https://doi.org/10.1090/s0002-9947-97-01652-8

Abstract

It has long been known that, under the assumption of the Riemann Hypothesis, one can give upper and lower bounds for the error <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sigma-summation Underscript p less-than-or-equal-to x Endscripts log p minus x"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∑</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>p</mml:mi> <mml:mo>≤</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> </mml:munder> <mml:mi>log</mml:mi> <mml:mo>⁡</mml:mo> <mml:mi>p</mml:mi> <mml:mo>−</mml:mo> <mml:mi>x</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\sum _{p \le x} \log p - x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the Prime Number Theorem, such bounds being within a factor of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis log x right-parenthesis squared"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>log</mml:mi> <mml:mo>⁡</mml:mo> <mml:mi>x</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">(\log x)^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of each other and this fact being equivalent to the Riemann Hypothesis. In this paper we show that, provided “Riemann Hypothesis” is replaced by “Generalized Riemann Hypothesis”, results of similar (often greater) precision hold in the case of the corresponding formula for the representation of an integer as the sum of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k"> <mml:semantics> <mml:mi>k</mml:mi> <mml:annotation encoding="application/x-tex">k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> primes for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k greater-than-or-equal-to 4"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k \ge 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and, in a mean square sense, for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k greater-than-or-equal-to 3"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">k \ge 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also sharpen, in most cases to best possible form, the original estimates of Hardy and Littlewood which were based on the assumption of a “Quasi-Riemann Hypothesis”. We incidentally give a slight sharpening to a well-known exponential sum estimate of Vinogradov-Vaughan.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Sums of one prime and two prime squares 2008 Hongze Li
+ Integers represented as the sum of one prime, two squares of primes and powers of 2 2008 Guangshi Lü
Haiwei Sun
+ PDF Chat The number of primes is finite 1999 Miodrag Živković
+ Sum of Prime Numbers 2020 Yuji Masuda
+ Sums of prime powers 1979 tefan Porubk�
+ PDF Chat Sums of One Prime Power and Four Prime Cubes in Short Intervals 2023 Gen Li
Xianjiu Huang
Xiaoming Pan
Li Yang
+ PDF Chat Primes differing by a fixed integer 1981 W. G. Leavitt
Albert A. Mullin
+ Primes of the form <mml:math> <mml:mrow> <mml:mo form="prefix">[</mml:mo> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>c</mml:mi> </mml:msup> <mml:mo form="postfix">]</mml:mo> </mml:mrow> </mml:math> with square-free <mml:math> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:math> 2024 Stoyan Dimitrov
+ PDF Chat Note on representing a prime as a sum of two squares 1972 John Brillhart
+ PDF Chat An upper bound for the sum of large differences between prime numbers 1981 Roger Cook
+ Sums of powers of primes 2016 Jane Gerard
Lawrence C. Washington
+ Sums of Three Primes 1980 H. Davenport
+ Sums of powers of primes II 2024 Lawrence C. Washington
+ On the Sum of Three Squares of Primes 1997 Hiroshi Mikawa
+ PDF Chat Sums involving the largest prime divisor of an integer 1987 Jean-Marie De Koninck
R. Sitaramachandrarao
+ Sums of powers of digits 2016 Alan F. Beardon
+ Which primes are sums of two cubes 1995 Fernando Rodríguez Villegas
Don Zagier
+ Equal sums of three powers 2004 T. D. Browning
D. R. Heath‐Brown
+ PDF Chat Largest known twin primes 1996 Karl‐Heinz Indlekofer
Antal A. Járai
+ PDF Chat Largest known twin primes and Sophie Germain primes 1999 Karl‐Heinz Indlekofer
Antal A. Járai