Almost optimal local well-posedness for the (3+1)-dimensional Maxwell–Klein–Gordon equations

Type: Article

Publication Date: 2003-11-13

Citations: 55

DOI: https://doi.org/10.1090/s0894-0347-03-00445-4

Abstract

We prove that the evolution problem for the Maxwell–Klein– Gordon system is locally well posed when the initial data belong to the Sobolev space $H^{\frac {1}{2} + \epsilon }$ for any $\epsilon > 0$. This is in spite of a complete failure of the standard model equations in the range $\frac {1}{2} < s < \frac {3}{4}$. The device that enables us to obtain inductive estimates is a new null structure which involves cancellations between the elliptic and hyperbolic terms in the full equations.

Locations

  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in 1+4 dimensions 2001 Sigmund Selberg
+ Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations on $\R^{1+4}$ 2001 Sigmund Selberg
+ PDF Chat ALMOST OPTIMAL LOCAL WELL-POSEDNESS OF THE MAXWELL-KLEIN-GORDON EQUATIONS IN 1 + 4 DIMENSIONS 2002 Sigmund Selberg
+ Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2019 Hartmut Pecher
+ Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2019 Hartmut Pecher
+ PDF Chat Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces 2020 Hartmut Pecher
+ PDF Chat Global well-posedness for the Maxwell–Klein–Gordon equation in 4+1 dimensions: Small energy 2015 Joachim Krieger
Jacob Sterbenz
Daniel Tataru
+ PDF Chat Global well-posedness and scattering of the (4+1)-dimensional Maxwell-Klein-Gordon equation 2016 Sung‐Jin Oh
Daniel Tataru
+ PDF Chat Local Well-Posedness of the (4 + 1)-Dimensional Maxwell–Klein–Gordon Equation at Energy Regularity 2016 Sung‐Jin Oh
Daniel Tataru
+ Local well-posedness of the (4+1)-dimensional Maxwell-Klein-Gordon equation at energy regularity 2015 Sung‐Jin Oh
Daniel Tataru
+ Local well-posedness of the (4+1)-dimensional Maxwell-Klein-Gordon equation at energy regularity 2015 Sung‐Jin Oh
Daniel Tataru
+ Low Regularity local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system 2007 Achenef Tesfahun
+ PDF Chat Null structure and almost optimal local regularity for the Dirac-Klein-Gordon system 2007 Piero DʼAncona
Damiano Foschi
Sigmund Selberg
+ Null structure and almost optimal local well-posedness of the Dirac-Klein-Gordon system 2005 Piero DʼAncona
Damiano Foschi
Sigmund Selberg
+ Global existence of Maxwell–Klein–Gordon fields in (2+1)-dimensional space-time 1980 Vincent Moncrief
+ PDF Chat The global well-posedness for Klein-Gordon-Hartree equation in modulation spaces 2024 Divyang G. Bhimani
+ Low regularity and local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system 2007 Achenef Tesfahun
+ PDF Chat GLOBAL WELL-POSEDNESS OF THE 1D DIRAC–KLEIN–GORDON SYSTEM IN SOBOLEV SPACES OF NEGATIVE INDEX 2009 Achenef Tesfahun
+ On the local existence for the maxwell-klein-gordon system in R<sup>3+1</sup> 1999 Scipio Cuccagna
+ Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $\mathbb R^{+}$ 2018 E. Compaan
Nikolaos Tzirakis