Covers of the integers with odd moduli and their applications to the forms $x^{m}-2^{n}$ and $x^{2}-F_{3n}/2$

Type: Article

Publication Date: 2009-04-27

Citations: 12

DOI: https://doi.org/10.1090/s0025-5718-09-02212-1

Abstract

In this paper we construct a cover $\{a_{s}(\operatorname {mod} \ n_{s})\}_{s=1}^{k}$ of $\mathbb {Z}$ with odd moduli such that there are distinct primes $p_{1},\ldots ,p_{k}$ dividing $2^{n_{1}}-1,\ldots ,2^{n_{k}}-1$ respectively. Using this cover we show that for any positive integer $m$ divisible by none of $3, 5, 7, 11, 13$ there exists an infinite arithmetic progression of positive odd integers the $m$th powers of whose terms are never of the form $2^{n}\pm p^{a}$ with $a,n\in \{0,1,2,\ldots \}$ and $p$ a prime. We also construct another cover of $\mathbb {Z}$ with odd moduli and use it to prove that $x^{2}-F_{3n}/2$ has at least two distinct prime factors whenever $n\in \{0,1,2,\ldots \}$ and $x\equiv a (\operatorname {mod} M)$, where $\{F_{i}\}_{i\geqslant 0}$ is the Fibonacci sequence, and $a$ and $M$ are suitable positive integers having 80 decimal digits.

Locations

  • Mathematics of Computation - View - PDF

Similar Works

Action Title Year Authors
+ Covers of the integers with odd moduli and their applications to the forms $x^m-2^n$ and $x^2-F_{3n}/2$ 2007 WU Ke-jian
Zhi‐Wei Sun
+ Connections between covers of $\mathbb Z$ and subset sums 2020 Zhi‐Wei Sun
+ PDF Chat On the congruence $$1^m + 2^m + \cdots + m^m\equiv n \pmod {m}$$ 1 m + 2 m + ⋯ + m m ≡ n ( mod m ) with $$n\mid m$$ n ∣ m 2014 J. M. Grau
Antonio M. Oller‐Marcén
Jonathan Sondow
+ On integers of the forms <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>k</mml:mi><mml:mo>±</mml:mo><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>k</mml:mi><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup><mml:mo>±</mml:mo><mml:mn>1</mml:mn></mml:math> 2006 Yong-Gao Chen
+ PDF Chat On the integers of the form $p^{2}+b^{2}+2^{n}$ and $b_{1}^{2}+b_{2}^{2}+2^{n^{2}}$ 2011 Hao Pan
Wei Zhang
+ Rational numbers with odd greedy expansion of fixed length 2023 Joel Louwsma
Joseph Martino
+ Integers of the form $$ax^2+bxy+cy^2$$ 2020 Naoki Uchida
+ PDF Chat A sharp result on $m$-covers 2007 Hao Pan
Zhi‐Wei Sun
+ Integers of the form $$x^2 + ny^2$$ x 2 + n y 2 2013 Bumkyu Cho
+ PDF Chat Prime powers dividing products of consecutive integer values of $$x^{2^n}+1$$ 2019 Stephan Baier
Pallab Kanti Dey
+ PDF Chat Integers that are sums of two cubes in the cyclotomic $\mathbb{Z}_p$-extension 2024 Anwesh Ray
+ Prime factors of $Φ_3(x)$ of the same form 2022 Cody S. Hansen
Pace P. Nielsen
+ The number of rationals determined by large sets of sifted integers 2022 Olivier Ramaré
+ PDF Chat EVERY SUFFICIENTLY LARGE EVEN NUMBER IS THE SUM OF TWO PRIMES 2022 Ricardo Barca
+ On integers of the form 𝑘2ⁿ+1 2000 Yong-Gao Chen
+ Integers without large prime factors III 1984 John Friedlander
+ PDF Chat A NOTE ON INTEGERS OF THE FORM 2<sup><i>n</i></sup>+<i>cp</i> 2002 Zhi‐Wei Sun
Siman Yang
+ On the prime decomposition of integers of the form $(z^n-y^n)/(z-y)$ 2019 Rachid Marsli
+ On $a^n+bn$ modulo $m$ 2013 Zhi‐Wei Sun
+ On prime factors of sums of integers II 1986 C.L. Stewart
R. Tijdeman