Type: Article
Publication Date: 2002-08-01
Citations: 24
DOI: https://doi.org/10.1090/s0002-9947-02-02981-1
We fix $n$ and say a square in the two-dimensional grid indexed by $(x,y)$ has color $c$ if $x+y \equiv c \pmod {n}$. A ribbon tile of order $n$ is a connected polyomino containing exactly one square of each color. We show that the set of order-$n$ ribbon tilings of a simply connected region $R$ is in one-to-one correspondence with a set of height functions from the vertices of $R$ to $\mathbb Z^{n}$ satisfying certain difference restrictions. It is also in one-to-one correspondence with the set of acyclic orientations of a certain partially oriented graph. Using these facts, we describe a linear (in the area of $R$) algorithm for determining whether $R$ can be tiled with ribbon tiles of order $n$ and producing such a tiling when one exists. We also resolve a conjecture of Pak by showing that any pair of order-$n$ ribbon tilings of $R$ can be connected by a sequence of local replacement moves. Some of our results are generalizations of known results for order-$2$ ribbon tilings (a.k.a. domino tilings). We also discuss applications of multidimensional height functions to a broader class of polyomino tiling problems.