On Hölder regularity for elliptic equations of non-divergence type in the plane

Type: Article

Publication Date: 2009-12-04

Citations: 19

DOI: https://doi.org/10.2422/2036-2145.2005.2.04

Abstract

This paper is concerned with strong solutions of uniformly elliptic equations of non-divergence type in the plane.First, we use the notion of quasiregular gradient mappings to improve Morrey's theorem on the Hölder continuity of gradients of solutions.Then we show that the Gilbarg-Serrin equation does not produce the optimal Hölder exponent in the considered class of equations.Finally, we propose a conjecture for the best possible exponent and prove it under an additional restriction.

Locations

  • ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE - View - PDF

Similar Works

Action Title Year Authors
+ Hölder regularity for non-divergence-form elliptic equations with discontinuous coefficients 2013 Giuseppe Di Fazio
Maria Stella Fanciullo
Pietro Zamboni
+ Local Hölder estimates for non-uniformly variable exponent elliptic equations in divergence form 2017 Fengping Yao
+ Gradient regularity for solutions to quasilinear elliptic equations in the plane 2014 Linda Maria De Cave
Carlo Sbordone
+ Gradient regularity for quasilinear elliptic Dirichlet problems in the plane 2016 Angela Alberico
Andrea Cianchi
Carlo Sbordone
+ Global Sobolev regularity for general elliptic equations of $p$-Laplacian type 2017 Sun‐Sig Byun
Dian K. Palagachev
Pilsoo Shin
+ Hölder regularity for non divergence form elliptic equations with discontinuous coefficients 2012 Giuseppe Di Fazio
Maria Stella Fanciullo
Pietro Zamboni
+ Global gradient estimates for divergence-type elliptic problems involving general nonlinear operators 2018 Yumi Cho
+ H\"older regularity for non divergence form elliptic equations with discontinuous coefficients 2012 Giuseppe Di Fazio
Maria Stella Fanciullo
Pietro Zamboni
+ PDF Chat Orlicz regularity of the gradient of solutions to quasilinear elliptic equations in the plane 2016 Linda Maria De Cave
Luigi D’Onofrio
Roberta Schiattarella
+ Harnack inequality and smoothness for quasilinear degenerate elliptic equations 2008 Giuseppe Di Fazio
Maria Stella Fanciullo
Pietro Zamboni
+ Existence of very weak solutions to nonlinear elliptic equation with nonstandard growth and global weighted gradient estimates 2023 Sun‐Sig Byun
Minkyu Lim
+ Sobolev and Hölder regularity results for some singular nonhomogeneous quasilinear problems 2020 Jacques Giacomoni
Deepak Kumar
K. Sreenadh
+ New gradient estimates for solutions to quasilinear divergence form elliptic equations with general Dirichlet boundary data 2019 Minh‐Phuong Tran
Thanh‐Nhan Nguyen
+ Optimal regularity for nonlinear elliptic equations with righthand side measure in variable exponent spaces 2018 Sun‐Sig Byun
Jung‐Tae Park
+ Hölder continuity of the gradients for non-homogenous elliptic equations of p(x)-Laplacian type 2024 Fengping Yao
+ Local regularity for quasi-linear parabolic equations in non-divergence form 2018 Amal Attouchi
+ PDF Chat Regularity results of solutions of quasilinear systems having singularities in the coefficients 2023 Flavia Giannetti
Gioconda Moscariello
+ Regularity for weak solutions to nondiagonal quasilinear degenerate elliptic systems 2016 Yan Dong
Pengcheng Niu
+ PDF Chat Discontinuous superlinear elliptic equations of divergence form 2009 Dian K. Palagachev
+ Hölder regularity of the gradient for solutions of fully nonlinear equations with sublinear first order terms 2013 Isabeau Birindelli
F. Demengel

Works That Cite This (19)

Action Title Year Authors
+ Higher order Calderón-Zygmund estimates for the p-Laplace equation 2019 Anna Kh. Balci
Lars Diening
Markus Weimar
+ Improved Hölder regularity for strongly elliptic PDEs 2020 Kari Astala
Albert Clop
Daniel Faraco
Jarmo Jääskeläinen
Aleksis Koski
+ PDF Chat Improved regularity for the <i>p</i>-Poisson equation 2020 Edgard A. Pimentel
Giane C. Rampasso
Makson S. Santos
+ Schwarz-Type Lemma, Landau-Type Theorem, and Lipschitz-Type Space of Solutions to Inhomogeneous Biharmonic Equations 2018 Shaolin Chen
Peijin Li
Xiantao Wang
+ An asymtotic sharp Sobolev regularity for planar infinity harmonic functions 2018 Herbert Koch
Yi Ru-Ya Zhang
Yuan Zhou
+ Higher Order Calderon-Zygmund Estimates for the p-Laplace Equation 2019 Anna Kh. Balci
Lars Diening
Markus Weimar
+ PDF Chat Convex integration and the Lp theory of elliptic equations 2009 Kari Astala
Daniel Faraco
László Székelyhidi
+ A proof of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msup></mml:mrow></mml:msup></mml:math>-regularity conjecture in the plane 2017 Damião J. Araújo
Eduardo V. Teixeira
José Miguel Urbano
+ LANDAU’S THEOREM FOR SOLUTIONS OF THE -EQUATION IN DIRICHLET-TYPE SPACES 2017 Shaolin Chen
Saminathan Ponnusamy
+ PDF Chat Towards the $C^{p^\prime}$-Regularity Conjecture in Higher Dimensions 2017 Damião J. Araújo
Eduardo V. Teixeira
José Miguel Urbano