Some Schrödinger operators with dense point spectrum

Type: Article

Publication Date: 1997-01-01

Citations: 73

DOI: https://doi.org/10.1090/s0002-9939-97-03559-4

Abstract

Given any sequence $\{E_{n}\}^{\infty }_{n=1}$ of positive energies and any monotone function $g(r)$ on $(0,\infty )$ with $g(0)=1$, $\lim \limits _{r\to \infty } g(r)=\infty$, we can find a potential $V(x)$ on $(-\infty ,\infty )$ such that $\{E_{n}\}^{\infty }_{n=1}$ are eigenvalues of $-\frac {d^{2}}{dx^{2}}+V(x)$ and $|V(x)|\leq (|x|+1)^{-1}g(|x|)$.

Locations

  • Proceedings of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Some Schrödinger Operators with Power-Decaying Potentials and Pure Point Spectrum 1997 Christian Remling
+ PDF Chat Examples of discrete Schrödinger operators with pure point spectrum 1983 Jürgen Pöschel
+ PDF Chat Absolutely continuous and pure point spectra of discrete operators with sparse potentials 2022 Stanislav Molchanov
Oleg Safronov
B. Vaĭnberg
+ Dense point spectra of Schr�dinger and Dirac operators 1986 Serguei Naboko
+ Spectrum of Multidimensional Schrödinger Operators with Sparse Potentials 2019 S. Molchanov
B. Vainberg
+ Multi-dimensional Schrödinger operators with some negative spectrum 2006 Oleg Safronov
+ Absolutely continuous and pure point spectra 2021 Stanislav Molchanov
Oleg Safronov
B. Vaĭnberg
+ PDF Chat Absolutely continuous and pure point spectra of discrete operators with sparse potentials 2021 Stanislav Molchanov
Oleg Safronov
B. Vaĭnberg
+ On the Spectrum of the Two-particle Shrödinger Operator with Point Interaction 2021 Zahriddin Muminov
Уткир Кулжанов
Sh. S. Lakaev
+ Absense of point spectrum for a class of discrete Schrodinger operators with quasiperiodic potential(Spectrum, Scattering and Related Topics) 1994 Masahiro Kaminaga
+ Absense of point spectrum for a class of discrete Schrodinger operators with quasiperiodic potential(Spectrum, Scattering and Related Topics) 1994 正博 神永
+ Absolutely continuous and pure point spectra of discrete operators with sparse potentials 2021 S. Molchanov
O. Safronov
B. Vainberg
+ Note on the Spectrum of Some Schrodinger Operators 1968 Teruo .................................................................................
+ Schrödinger-type operators with continuous spectra 1982 M. S. P. Eastham
Hubert Kalf
+ PDF Chat On the point spectrum of Schrödinger operators 1982 A. M. Berthier
+ One-dimensional Schrödinger operator with unbounded potential and point interactions 2016 Aleksandra Ananieva
+ On the spectrum of the Schrödinger operator with large potential concentrated on a small set 2006 A. R. Bikmetov
R. R. Gadyl’shin
+ Schrödinger Operators with random point interactions (Spectral and Scattering Theory and Related Topics) 2021 Takuya Mine
+ On the point spectrum of discrete Schr�dinger operator 1992 Serguei Naboko
S. I. Yakovlev
+ 1D Schrödinger operator with periodic plus compactly supported potentials 2009 Evgeny Korotyaev