GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗

Type: Preprint

Publication Date: 2001-01-31

Citations: 79

Locations

  • arXiv (Cornell University) - View
  • arXiv (Cornell University) - View
  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat Global Well-Posedness for Schrödinger Equations with Derivative 2001 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ Global well-posedness for Schrödinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terry Tao
+ PDF Chat A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative 2002 J. Colliander
M. Keel
G. Staffilani
Hideo Takaoka
Terence Tao
+ A refined global well-posedness result for Schrodinger equations with derivative 2001 J. Colliander
M. Keel
Gigliola Staffilani
Hideo Takaoka
Terence Tao
+ PDF Global Well-Posedness of the Derivative Nonlinear Schroedinger Equations on T 2010 Yin Yin Su Win
+ Global Well-posedness for the Biharmonic Quintic Nonlinear Schrödinger Equation on $\mathbb{R}^2$ 2022 Engin Başakoğlu
T. Burak Gürel
Oğuz Yılmaz
+ PDF Global well-posedness on the derivative nonlinear Schrödinger equation 2015 Yifei Wu
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^{2}(\R)$ 2024 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schrödinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global well-posedness and polynomial bounds for the defocusing $L^{2}$-critical nonlinear Schr\"odinger equation in $\R$ 2007 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ PDF Global well-posedness for the derivative nonlinear Schr\"odinger equation 2022 Hajer Bahouri
Galina Perelman
+ The Cauchy problem for the semilinear quintic Schrödinger equation in one dimension,the defocusing case 2002 Nikolaos Tzirakis
+ Global well-posedness for the derivative nonlinear Schrödinger equation in $L^2(\mathbb{R})$ 2022 Benjamin Harrop‐Griffiths
Rowan Killip
Maria Ntekoume
Monica Vişan
+ Global well-posedness for the derivative nonlinear Schrödinger equation 2020 Hajer Bahouri
Galina Perelman
+ Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ 2008 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis
+ Global Well-Posedness on a generalized derivative nonlinear Schr\"odinger equation 2016 Noriyoshi Fukaya
Masayuki Hayashi
Takahisa Inui
+ Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space 2013 Yifei Wu
+ Global well-posedness for the derivative nonlinear Schr\"{o}dinger equation in $H^{\frac 12} (\mathbb{R})$ 2016 Zihua Guo
Yifei Wu
+ The derivative nonlinear Schrödinger equation on the half line 2017 M. Burak Erdoğan
T.B. Gürel
Nikolaos Tzirakis
+ Correction to “Global Well-Posedness and Polynomial Bounds for the Defocusing<i>L</i><sup>2</sup>-Critical Nonlinear Schrödinger Equation in ℝ” 2010 Daniela De Silva
Nataša Pavlović
Gigliola Staffilani
Nikolaos Tzirakis