Harmonics for Deformed Steenrod Operators

Type: Preprint

Publication Date: 2008-01-01

Citations: 5

DOI: https://doi.org/10.48550/arxiv.0812.3566

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Harmonics for deformed Steenrod operators (Extended Abstract) 2010 François Bergeron
Adriano M. Garsia
Nolan R. Wallach
+ On a conjecture of Hivert and Thiéry about Steenrod operators 2012 Michele D’Adderio
Luca Moci
+ On a conjecture of Hivert and Thiéry about Steenrod operators 2010 Michele DʼAdderio
Luca Moci
+ On a conjecture of Hivert and Thi\'ery about Steenrod operators 2010 Michele DʼAdderio
Luca Moci
+ Spherical harmonics and applications associated with the Weinstein operator 1996 Zouhir Ben Nahia
Néjib Ben Salem
+ Modified Spherical Harmonics in Several Dimensions 2019 Heinz Leutwiler
+ PDF Chat Invariant subspaces for shift operators of multiplicity one 1982 Shinzō Kawamura
+ Harmonic analysis on non-semisimple symmetric spaces 1986 Ronald L. Lipsman
+ Spherical functions of Hermitian and symmetric forms 1988 由美子 小林
+ Operators in Spherical Coordinates 2019 Brian P. Anderson
+ Eigenfunctions on symmetric spaces 2003 Sofiane Souaifi
Erik P. van den Ban
+ Invariant subspaces of shift operators of arbitrary multiplicity 1983 新蔵 河村
+ Reducing Subspaces of Complex Symmetric Operators 2020 Cun Wang
Sen Zhu
+ Versal Deformations of a Dirac Operator on a Sphere and Related Dynamical Systems 2011
+ Generalized Bessel functions on symmetric spaces 1999 Goro Shimura
+ Generalized Bessel functions on symmetric spaces 1999 Goro Shimura
+ Hankel Operators on Segal-Bargmann Spaces 2004 Thomas Deck
+ Perturbation of operators and applications to frame theory 1997 Peter G. Cazassa
Ole Christensen
+ Modified Spherical Harmonics in Four Dimensions 2018 Heinz Leutwiler
+ Polynomial Dirac Operators in Superspace 2014 Hongfen Yuan
Zhihai Zhang
Yuying Qiao

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat Combinatorics, symmetric functions and Hilbert schemes 2002 Mark Haiman