Cancellation for the multilinear Hilbert transform

Type: Article

Publication Date: 2015-12-30

Citations: 11

DOI: https://doi.org/10.1007/s13348-015-0162-y

Abstract

For any natural number k, consider the k-linear Hilbert transform $$\begin{aligned} H_k( f_1,\dots ,f_k )(x) := {\text {p.v.}} \int _\mathbb {R}f_1(x+t) \dots f_k(x+kt)\ \frac{dt}{t} \end{aligned}$$ for test functions $$f_1,\dots ,f_k: \mathbb {R}\rightarrow \mathbb {C}$$ . It is conjectured that $$H_k$$ maps $$L^{p_1}(\mathbb {R}) \times \dots \times L^{p_k}(\mathbb {R}) \rightarrow L^p(\mathbb {R})$$ whenever $$1 < p_1,\dots ,p_k,p < \infty $$ and $$\frac{1}{p} = \frac{1}{p_1} + \dots + \frac{1}{p_k}$$ . This is proven for $$k=1,2$$ , but remains open for larger k. In this paper, we consider the truncated operators $$\begin{aligned} H_{k,r,R}( f_1,\dots ,f_k )(x) := \int _{r \leqslant |t| \leqslant R} f_1(x+t) \dots f_k(x+kt)\ \frac{dt}{t} \end{aligned}$$ for $$R > r > 0$$ . The above conjecture is equivalent to the uniform boundedness of $$\Vert H_{k,r,R} \Vert _{L^{p_1}(\mathbb {R}) \times \dots \times L^{p_k}(\mathbb {R}) \rightarrow L^p(\mathbb {R})}$$ in r, R, whereas the Minkowski and Hölder inequalities give the trivial upper bound of $$2 \log \frac{R}{r}$$ for this quantity. By using the arithmetic regularity and counting lemmas of Green and the author, we improve the trivial upper bound on $$\Vert H_{k,r,R} \Vert _{L^{p_1}(\mathbb {R}) \times \dots \times L^{p_k}(\mathbb {R}) \rightarrow L^p(\mathbb {R})}$$ slightly to $$o( \log \frac{R}{r} )$$ in the limit $$\frac{R}{r} \rightarrow \infty $$ for any admissible choice of k and $$p_1,\dots ,p_k,p$$ . This establishes some cancellation in the k-linear Hilbert transform $$H_k$$ , but not enough to establish its boundedness in $$L^p$$ spaces.

Locations

  • Collectanea mathematica - View
  • arXiv (Cornell University) - View - PDF
  • Collectanea mathematica - View
  • arXiv (Cornell University) - View - PDF
  • Collectanea mathematica - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Cancellation for the multilinear Hilbert transform 2015 Terence Tao
+ PDF Chat Cancellation for the simplex Hilbert transform 2017 Pavel Zorin‐Kranich
+ $L^{p}$ estimates for the bilinear Hilbert transform for $1/2<p\leq2/3$: A counterexample and generalizations to non-smooth symbols 2014 Wei Dai
Guozhen Lu
+ On bilinear Hilbert transform along two polynomials 2017 Dong Dong
+ PDF Chat Power-type cancellation for the simplex Hilbert transform 2019 Polona Durcik
Vjekoslav Kovač
Christoph Thiele
+ PDF ON A TWO WEIGHTS ESTIMATE FOR THE COMMUTATOR 2017 Dae‐Won Chung
+ A short glimpse of the giant footprint of Fourier analysis and recent multilinear advances 2020 Loukas Grafakos
+ The Orlicz inequality for multilinear forms 2020 Daniel Núñez-Alarcón
Daniel Pellegrino
Diana Serrano-Rodríguez
+ Hankel-Like Operators in 2008 Namita Das
+ Some remarks on the $n$-linear Hilbert transform for $n\geq 4$ 2012 Camil Muscalu
+ Some remarks on the $n$-linear Hilbert transform for $n\geq 4$ 2012 Camil Muscalu
+ PDF Multipliers and convolution spaces for the Hankel space and its dual on the half space $[0,+\infty [ \times\mathbb{R}^n$ 2016 C. Baccar
+ Commutator Estimates Comprising the Frobenius Norm – Looking Back and Forth 2017 Zhiqin Lu
David Wenzel
+ PDF Chat The Two Weight Inequality for the Hilbert Transform: A Primer 2017 Michael T. Lacey
+ PDF Chat Uniform bounds for bilinear symbols with linear K-quasiconformally embedded singularity 2024 Marco Fraccaroli
Olli Saari
Christoph Thiele
+ PDF Endpoint estimates for commutators of singular integrals related to Schr\"odinger operators 2015 Luong Dang Ky
+ Endpoint estimates for commutators of singular integrals related to Schrödinger operators 2012 Luong Dang Ky
+ Two-weight Hilbert transform. Towards the main theorem 2003 Alexander Volberg
+ Summability of multilinear forms on classical sequence spaces 2016 Tony Nogueira
Pilar Rueda
+ Summability of multilinear forms on classical sequence spaces 2016 Tony Nogueira
Pilar Rueda