Definably simple groups in o-minimal structures

Type: Article
Publication Date: 2000-02-24
Citations: 70
DOI: https://doi.org/10.1090/s0002-9947-00-02593-9

Abstract

Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper G equals mathematical left-angle upper G comma dot mathematical right-angle"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">G</mml:mi> </mml:mrow> <mml:mo>=</mml:mo> <mml:mo fence="false" stretchy="false">⟨</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋅</mml:mo> <mml:mo fence="false" stretchy="false">⟩</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {G}=\langle G, \cdot \rangle</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a group definable in an o-minimal structure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. A subset <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-definable if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is definable in the structure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mathematical left-angle upper G comma dot mathematical right-angle"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">⟨</mml:mo> <mml:mi>G</mml:mi> <mml:mo>,</mml:mo> <mml:mo>⋅</mml:mo> <mml:mo fence="false" stretchy="false">⟩</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\langle G,\cdot \rangle</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (while <italic>definable</italic> means definable in the structure <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper M"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">M</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>). Assume <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has no <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-definable proper subgroup of finite index. In this paper we prove that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has no nontrivial abelian normal subgroup, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the direct product of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper G"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathbb {G}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-definable subgroups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H 1 comma ellipsis comma upper H Subscript k Baseline"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mo>,</mml:mo> <mml:mo>…</mml:mo> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>k</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">H_1,\ldots ,H_k</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that each <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript i"> <mml:semantics> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">H_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is definably isomorphic to a semialgebraic linear group over a definable real closed field. As a corollary we obtain an o-minimal analogue of Cherlin’s conjecture.

Locations

  • Transactions of the American Mathematical Society
We present a diagram surveying equivalence or strict implication for properties of different nature (algebraic, model theoretic, topological, etc.) about groups definable in o-minimal structures. All results are well-known and … We present a diagram surveying equivalence or strict implication for properties of different nature (algebraic, model theoretic, topological, etc.) about groups definable in o-minimal structures. All results are well-known and an extensive bibliography is provided.
We present a diagram surveying equivalence or strict implication for properties of different nature (algebraic, model theoretic, topological, etc.) about groups definable in o-minimal structures. All results are well-known and … We present a diagram surveying equivalence or strict implication for properties of different nature (algebraic, model theoretic, topological, etc.) about groups definable in o-minimal structures. All results are well-known and an extensive bibliography is provided.
We classify definable linear orders in o-minimal structures expanding groups. For example, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper P comma precedes right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>P</mml:mi> <mml:mo>,</mml:mo> <mml:mo>≺</mml:mo> … We classify definable linear orders in o-minimal structures expanding groups. For example, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper P comma precedes right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>P</mml:mi> <mml:mo>,</mml:mo> <mml:mo>≺</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(P,\prec )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a linear order definable in the real field. Then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper P comma precedes right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>P</mml:mi> <mml:mo>,</mml:mo> <mml:mo>≺</mml:mo> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(P,\prec )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> embeds definably in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis double-struck upper R Superscript n plus 1 Baseline comma greater-than Subscript lex Baseline right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo>,</mml:mo> <mml:msub> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>lex</mml:mtext> </mml:mrow> </mml:msub> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(\mathbb {R}^{n+1},&gt;_{\text {lex}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="greater-than Subscript lex Baseline"> <mml:semantics> <mml:msub> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>lex</mml:mtext> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">&gt;_{\text {lex}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the lexicographic order and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the o-minimal dimension of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This improves a result of Onshuus and Steinhorn in the o-minimal group context.
We classify the sequences <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mathematical left-angle upper S Subscript n Baseline bar n element-of double-struck upper N mathematical right-angle"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">⟨</mml:mo> <mml:msub> <mml:mi>S</mml:mi> … We classify the sequences <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="mathematical left-angle upper S Subscript n Baseline bar n element-of double-struck upper N mathematical right-angle"> <mml:semantics> <mml:mrow> <mml:mo fence="false" stretchy="false">⟨</mml:mo> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo>∣</mml:mo> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">N</mml:mi> </mml:mrow> <mml:mo fence="false" stretchy="false">⟩</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\langle S_{n} \mid n \in \mathbb {N} \rangle</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of finite simple nonabelian groups such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="product Underscript n Endscripts upper S Subscript n"> <mml:semantics> <mml:mrow> <mml:munder> <mml:mo>∏</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:munder> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">\prod _{n} S_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has uncountable cofinality.
In this paper, we give a classification of the subgroups of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P upper S upper L left-parenthesis 3 comma double-struck upper C right-parenthesis"> <mml:semantics> <mml:mrow> … In this paper, we give a classification of the subgroups of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P upper S upper L left-parenthesis 3 comma double-struck upper C right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>PSL</mml:mi> <mml:mo>⁡</mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mn>3</mml:mn> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {PSL}(3, \mathbb {C})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> that act on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper P Subscript double-struck upper C Superscript 2"> <mml:semantics> <mml:msubsup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">P</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> <mml:annotation encoding="application/x-tex">\mathbb {P}_{\mathbb {C}}^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in such a way that their Kulkarni limit set has finitely many lines in general position lines. These are the elementary groups.
If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a group and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> … If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a group and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a group of operators on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> then write <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d Subscript upper E Baseline left-parenthesis upper N right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>E</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{d_E}(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the minimum number of elements needed to generate <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as an <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-group. It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a normal subgroup of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> acts on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N"> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding="application/x-tex">N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by conjugation, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d Subscript upper E Baseline left-parenthesis upper N right-parenthesis equals d Subscript upper E Baseline left-parenthesis upper N slash upper N prime right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>E</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>E</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:msup> <mml:mi>N</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{d_E}(N) = {d_E}(N/N’)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d Subscript upper E Baseline left-parenthesis upper N right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>d</mml:mi> <mml:mi>E</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{d_E}(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is finite and there does not exist an infinite descending series of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E"> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding="application/x-tex">E</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-normal subgroups <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N prime equals upper C 0 greater-than upper C 1 greater-than midline-horizontal-ellipsis"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>N</mml:mi> <mml:mo>′</mml:mo> </mml:msup> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mo>⋯</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">N’ = {C_0} &gt; {C_1} &gt; \cdots</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with each <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper C Subscript i Baseline slash upper C Subscript i plus 1"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{C_i}/{C_{i + 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> perfect. Both these conditions are, in general, necessary.
We define a group structure on the set of compact “minimal” paths in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> … We define a group structure on the set of compact “minimal” paths in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We classify all finitely generated subgroups of this group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>: they are free products of free abelian groups and surface groups. Moreover, each such group occurs in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The subgroups of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> isomorphic to surface groups arise from certain topological <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-forms on the corresponding surfaces. We construct examples of such <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1"> <mml:semantics> <mml:mn>1</mml:mn> <mml:annotation encoding="application/x-tex">1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-forms for cohomology classes corresponding to certain eigenvectors for the action on cohomology of a pseudo-Anosov diffeomorphism. Using <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we construct a non-polygonal tiling problem in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that is, a finite set of tiles whose corresponding tilings are not equivalent to those of any set of polygonal tiles. The group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has applications to combinatorial tiling problems of the type: given a set of tiles <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a region <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, can <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be tiled by translated copies of tiles in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"> <mml:semantics> <mml:mi>P</mml:mi> <mml:annotation encoding="application/x-tex">P</mml:annotation> </mml:semantics> </mml:math> </inline-formula>?
We provide a new characterization of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-groups which is used to develop central results of the theory and, … We provide a new characterization of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-groups which is used to develop central results of the theory and, in particular, to show that summands of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-groups are <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S"> <mml:semantics> <mml:mi>S</mml:mi> <mml:annotation encoding="application/x-tex">S</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-groups.
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript negative 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and … Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript negative 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be finite groups such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript negative 1 Baseline intersection upper A 1 equals upper A 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>∩</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>=</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_{ - 1}} \cap {A_1} = {A_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a common subgroup with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket upper A Subscript negative 1 Baseline colon upper A 0 right-bracket equals 4"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> <mml:mo>=</mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">[{A_{ - 1}}:{A_0}] = 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-bracket upper A 1 colon upper A 0 right-bracket equals 2"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">[</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">]</mml:mo> <mml:mo>=</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">[{A_1}:{A_0}] = 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We further assume that only the trivial subgroup of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A 0"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is normal in both <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript negative 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A 1"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Let <italic>K</italic> be the intersection of all conjugates <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x upper A 0 x Superscript negative 1"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>x</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">x{A_0}{x^{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x element-of upper A Subscript negative 1"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">x \in {A_{ - 1}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Then if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A 0 not-equals StartSet 1 EndSet"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mo>≠</mml:mo> <mml:mo fence="false" stretchy="false">{</mml:mo> <mml:mn>1</mml:mn> <mml:mo fence="false" stretchy="false">}</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_0} \ne \{ 1\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we have <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript negative 1 Baseline slash upper K approximately-equals upper D 4 comma upper A 4"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo>≅</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>D</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_{ - 1}}/K \cong {D_4},{A_4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S 4"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{S_4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We describe in detail all such amalgams <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper A Subscript negative 1 Baseline comma upper A 1 right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">({A_{ - 1}},{A_1})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> when <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript negative 1 Baseline slash upper K approximately-equals upper D 4"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo>≅</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>D</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_{ - 1}}/K \cong {D_4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (dihedral group of order 8). There are infinitely many of them, while if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A Subscript negative 1 Baseline slash upper K approximately-equals upper A 4"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>K</mml:mi> <mml:mo>≅</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>A</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{A_{ - 1}}/K \cong {A_4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S 4"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>S</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">{S_4}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> there are only finitely many amalgams.
For <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> any ring with unity, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N upper K 1 left-parenthesis upper … For <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper R"> <mml:semantics> <mml:mi>R</mml:mi> <mml:annotation encoding="application/x-tex">R</mml:annotation> </mml:semantics> </mml:math> </inline-formula> any ring with unity, let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N upper K 1 left-parenthesis upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">N{K_1}(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denote the kernel of the homomorphism <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon Subscript asterisk Baseline colon upper K 1 left-parenthesis upper R left-bracket t right-bracket right-parenthesis right-arrow upper K 1 left-parenthesis upper R right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msub> </mml:mrow> <mml:mo>:</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">[</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">]</mml:mo> <mml:mo stretchy="false">)</mml:mo> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{\varepsilon _*}:{K_1}(R[t]) \to {K_1}(R)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> induced by the augmentation <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon colon t right-arrow 0"> <mml:semantics> <mml:mrow> <mml:mi>ε<!-- ε --></mml:mi> <mml:mo>:</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">→<!-- → --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\varepsilon :t \to 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="pi"> <mml:semantics> <mml:mi>π<!-- π --></mml:mi> <mml:annotation encoding="application/x-tex">\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite group of square-free order, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper N upper K 1 left-parenthesis upper Z pi right-parenthesis equals 0"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>Z</mml:mi> <mml:mi>π<!-- π --></mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">N{K_1}(Z\pi ) = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>C</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">LFC</mml:annotation></mml:semantics></mml:math></inline-formula>be the class of all locally<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F upper C"><mml:semantics><mml:mrow><mml:mi>F</mml:mi><mml:mi>C</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">FC</mml:annotation></mml:semantics></mml:math></inline-formula>-groups. We study the existentially closed groups in the … Let<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>C</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">LFC</mml:annotation></mml:semantics></mml:math></inline-formula>be the class of all locally<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper F upper C"><mml:semantics><mml:mrow><mml:mi>F</mml:mi><mml:mi>C</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">FC</mml:annotation></mml:semantics></mml:math></inline-formula>-groups. We study the existentially closed groups in the class<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C Subscript p"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:mrow></mml:mrow><mml:annotation encoding="application/x-tex">LF{C_p}</mml:annotation></mml:semantics></mml:math></inline-formula>of all<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>C</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">LFC</mml:annotation></mml:semantics></mml:math></inline-formula>-groups<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"><mml:semantics><mml:mi>H</mml:mi><mml:annotation encoding="application/x-tex">H</mml:annotation></mml:semantics></mml:math></inline-formula>whose torsion subgroup<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T left-parenthesis upper H right-parenthesis"><mml:semantics><mml:mrow><mml:mi>T</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>H</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">T(H)</mml:annotation></mml:semantics></mml:math></inline-formula>is a<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"><mml:semantics><mml:mi>p</mml:mi><mml:annotation encoding="application/x-tex">p</mml:annotation></mml:semantics></mml:math></inline-formula>-group. Differently from the situation in<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mi>C</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">LFC</mml:annotation></mml:semantics></mml:math></inline-formula>, every existentially closed<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C Subscript p"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:mrow></mml:mrow><mml:annotation encoding="application/x-tex">LF{C_p}</mml:annotation></mml:semantics></mml:math></inline-formula>-group is already closed in<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C Subscript p"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>C</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:mrow></mml:mrow><mml:annotation encoding="application/x-tex">LF{C_p}</mml:annotation></mml:semantics></mml:math></inline-formula>, and there exist<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 Superscript normal alef 0"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:msup><mml:mn>2</mml:mn><mml:mrow class="MJX-TeXAtom-ORD"><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi mathvariant="normal">ℵ<!-- ℵ --></mml:mi><mml:mn>0</mml:mn></mml:msub></mml:mrow></mml:mrow></mml:msup></mml:mrow><mml:annotation encoding="application/x-tex">{2^{{\aleph _0}}}</mml:annotation></mml:semantics></mml:math></inline-formula>countable closed<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L upper F upper C Subscript upper P"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mi>F</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>C</mml:mi><mml:mi>P</mml:mi></mml:msub></mml:mrow></mml:mrow><mml:annotation encoding="application/x-tex">LF{C_P}</mml:annotation></mml:semantics></mml:math></inline-formula>-groups<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding="application/x-tex">G</mml:annotation></mml:semantics></mml:math></inline-formula>. However, in the countable case,<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T left-parenthesis upper G right-parenthesis"><mml:semantics><mml:mrow><mml:mi>T</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>G</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">T(G)</mml:annotation></mml:semantics></mml:math></inline-formula>is up to isomorphism always a unique locally finite<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"><mml:semantics><mml:mi>p</mml:mi><mml:annotation encoding="application/x-tex">p</mml:annotation></mml:semantics></mml:math></inline-formula>-group with similar properties as the unique countable existentially closed locally finite<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"><mml:semantics><mml:mi>p</mml:mi><mml:annotation encoding="application/x-tex">p</mml:annotation></mml:semantics></mml:math></inline-formula>-group<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper E Subscript p"><mml:semantics><mml:mrow class="MJX-TeXAtom-ORD"><mml:msub><mml:mi>E</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:mrow><mml:annotation encoding="application/x-tex">{E_p}</mml:annotation></mml:semantics></mml:math></inline-formula>.
It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a group of even order with trivial center such that <inline-formula … It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a group of even order with trivial center such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper G EndAbsoluteValue greater-than 2 StartAbsoluteValue upper C Subscript upper G Baseline left-parenthesis t right-parenthesis EndAbsoluteValue cubed"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>G</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">|G|&gt;2|C_{G}(t)|^{3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some involution <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="t element-of upper G"> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>G</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">t\in G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then there exists a proper subgroup <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H"> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding="application/x-tex">H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper G EndAbsoluteValue greater-than StartAbsoluteValue upper H EndAbsoluteValue squared"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>H</mml:mi> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">|G|&gt; |H|^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper G EndAbsoluteValue greater-than StartAbsoluteValue upper C Subscript upper G Baseline left-parenthesis t right-parenthesis EndAbsoluteValue cubed"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>&gt;</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>G</mml:mi> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">|G|&gt;|C_{G}(t)|^{3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="k left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>k</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">k(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the class number of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="StartAbsoluteValue upper G EndAbsoluteValue less-than-or-equal-to k left-parenthesis upper G right-parenthesis cubed"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo stretchy="false">|</mml:mo> </mml:mrow> <mml:mo>≤</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:msup> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">|G|\leq k(G)^{3}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-group and … Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="p"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding="application/x-tex">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-group and denote by <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K Subscript i Baseline left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_i}(G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the members of the lower central series of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We call <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of type <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis m comma n right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>m</mml:mi> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mi>n</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(m,\,n)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if (a) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has nilpotency class <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="m minus 1"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">m - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, (b) <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G slash upper K 2 left-parenthesis upper G right-parenthesis approximately-equals bold upper Z Subscript p Sub Superscript n Baseline times bold upper Z Subscript p Sub Superscript n"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mn>2</mml:mn> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo>×<!-- × --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">G/{K_2}(G) \cong {{\mathbf {Z}}_{{p^n}}} \times {{\mathbf {Z}}_{{p^n}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper K Subscript i Baseline left-parenthesis upper G right-parenthesis slash upper K Subscript i plus 1 Baseline left-parenthesis upper G right-parenthesis approximately-equals bold upper Z Subscript p Sub Superscript n"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>K</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>i</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msub> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> <mml:mo>≅<!-- ≅ --></mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="bold">Z</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mi>p</mml:mi> <mml:mi>n</mml:mi> </mml:msup> </mml:mrow> </mml:mrow> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">{K_i}(G)/{K_{i + 1}}(G) \cong {{\mathbf {Z}}_{{p^n}}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for every <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="i"> <mml:semantics> <mml:mi>i</mml:mi> <mml:annotation encoding="application/x-tex">i</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="2 less-than-or-slanted-equals i less-than-or-slanted-equals n minus 1"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>i</mml:mi> <mml:mo>⩽<!-- ⩽ --></mml:mo> <mml:mi>n</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">2 \leqslant i \leqslant n - 1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. In this work we describe the structure of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A u t left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>Aut</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {Aut} (G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and certain relations between <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper O u t left-parenthesis upper G right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>Out</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy="false">(</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">\operatorname {Out} (G)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.
The <italic>dead-end depth</italic> of an element <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding="application/x-tex">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation … The <italic>dead-end depth</italic> of an element <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding="application/x-tex">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of a group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, with respect to a generating set <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is the distance from <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="g"> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding="application/x-tex">g</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to the complement of the radius <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d Subscript script upper A Baseline left-parenthesis 1 comma g right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mi>g</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">d_{\mathcal {A}}(1,g)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> closed ball, in the word metric <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d Subscript script upper A"> <mml:semantics> <mml:msub> <mml:mi>d</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:annotation encoding="application/x-tex">d_{\mathcal {A}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> defined with respect to <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="script upper A"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi class="MJX-tex-caligraphic" mathvariant="script">A</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathcal {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We exhibit a finitely presented group <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding="application/x-tex">G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with a finite generating set with respect to which there is no upper bound on the dead-end depth of elements.
Let G be a group definable in an o-minimal structure M. We prove that the union of the Cartan subgroups of G is a dense subset of G. When M … Let G be a group definable in an o-minimal structure M. We prove that the union of the Cartan subgroups of G is a dense subset of G. When M is an expansion of a real closed field, we give a characterization of Cartan subgroups of G via their Lie algebras which allow us to prove firstly that every Cartan subalgebra of the Lie algebra of G is the Lie algebra of a definable subgroup — a Cartan subgroup of G — and secondly that the set of regular points of G — a dense subset of G — is formed by points which belong to a unique Cartan subgroup of G.
We study analogues of the notions from Lie theory of Levi subgroup and Levi decomposition, in the case of groups $G$ definable in an $o$-minimal expansion of a real closed … We study analogues of the notions from Lie theory of Levi subgroup and Levi decomposition, in the case of groups $G$ definable in an $o$-minimal expansion of a real closed field. With a rather strong definition of <i>ind-definable semisimple subgroup</i>,
We study the connected components G^00, G^000 and their quotients for a group G definable in a saturated o-minimal expansion of a real closed field. We show that G^00/G^000 is … We study the connected components G^00, G^000 and their quotients for a group G definable in a saturated o-minimal expansion of a real closed field. We show that G^00/G^000 is naturally the quotient of a connected compact commutative Lie group by a dense finitely generated subgroup. We also highlight the role of universal covers of semisimple Lie groups.
There are strong analogies between groups definable in o-minimal structures and real Lie groups. Nevertheless, unlike the real case, not every definable group has maximal definably compact subgroups. We study … There are strong analogies between groups definable in o-minimal structures and real Lie groups. Nevertheless, unlike the real case, not every definable group has maximal definably compact subgroups. We study definable groups G which are not definably compact showing that they have a unique maximal normal definable torsion-free subgroup N; the quotient G/N always has maximal definably compact subgroups, and for every such a K there is a maximal definable torsion-free subgroup H such that G/N can be decomposed as G/N = KH, and the intersection between K and H is trivial. Thus G is definably homotopy equivalent to K. When G is solvable then G/N is already definably compact. In any case (even when G has no maximal definably compact subgroup) we find a definable Lie-like decomposition of G where the role of maximal tori is played by maximal 0-subgroups.
We show that for G a simple compact Lie group, the infinitesimal subgroup G 00 is bi-interpretable with a real closed convexly valued field. We deduce that for G an … We show that for G a simple compact Lie group, the infinitesimal subgroup G 00 is bi-interpretable with a real closed convexly valued field. We deduce that for G an infinite definably compact group definable in an o-minimal expansion of a field, G 00 is bi-interpretable with the disjoint union of a (possibly trivial) ℚ-vector space and finitely many (possibly zero) real closed valued fields. We also describe the isomorphisms between such infinitesimal subgroups, and along the way prove that every definable field in a real closed convexly valued field R is definably isomorphic to R.
We prove that in an arbitrary o-minimal structure, every interpretable group is definably isomorphic to a definable one. We also prove that every definable group lives in a cartesian product … We prove that in an arbitrary o-minimal structure, every interpretable group is definably isomorphic to a definable one. We also prove that every definable group lives in a cartesian product of one-dimensional definable group-intervals (or one-dimensional definable groups). We discuss the general open question of elimination of imaginaries in an o-minimal structure.
Introduction. These notes were originally written for a tutorial I gave in a Modnet Summer meeting which took place in Oxford 2006. I later gave a similar tutorial in the … Introduction. These notes were originally written for a tutorial I gave in a Modnet Summer meeting which took place in Oxford 2006. I later gave a similar tutorial in the Wroclaw Logic colloquium 2007. The goal was to survey recent work in model theory of o-minimal structures, centered around the solution to a beautiful conjecture of Pillay on definable groups in o-minimal structures. The conjecture (which is now a theorem in most interesting cases) suggested a connection between arbitrary definable groups in o-minimal structures and compact real Lie groups.
We continue the investigation of infinite, definably simple groups which are definable in o-minimal structures. In<italic>Definably simple groups in o-minimal structures</italic>, we showed that every such group is a semialgebraic … We continue the investigation of infinite, definably simple groups which are definable in o-minimal structures. In<italic>Definably simple groups in o-minimal structures</italic>, we showed that every such group is a semialgebraic group over a real closed field. Our main result here, stated in a model theoretic language, is that every such group is either bi-interpretable with an algebraically closed field of characteristic zero (when the group is stable) or with a real closed field (when the group is unstable). It follows that every abstract isomorphism between two unstable groups as above is a composition of a semialgebraic map with a field isomorphism. We discuss connections to theorems of Freudenthal, Borel-Tits and Weisfeiler on automorphisms of real Lie groups and simple algebraic groups over real closed fields.
We consider groups definable in the structure Ran and certain o-minimal expansions of it.We prove: If G = G, * is a definable abelian torsion-free group, then G is definably … We consider groups definable in the structure Ran and certain o-minimal expansions of it.We prove: If G = G, * is a definable abelian torsion-free group, then G is definably isomorphic to a direct sum of R, + k and R >0 , • m , for some k, m 0. Futhermore, this isomorphism is definable in the structure R, +, •, G .In particular, if G is semialgebraic, then the isomorphism is semialgebraic.We show how to use the above result to give an "o-minimal proof" to the classical Chevalley theorem for abelian algebraic groups over algebraically closed fields of characteristic zero.We also prove: Let M be an arbitrary o-minimal expansion of a real closed field R and G a definable group of dimension n.The group G is torsion-free if and only if G, as a definable group-manifold, is definably diffeomorphic to R n .
We consider an arbitrary topological group G definable in a structure \mathcal M , such that some basis for the topology of G consists of sets definable in \mathcal M … We consider an arbitrary topological group G definable in a structure \mathcal M , such that some basis for the topology of G consists of sets definable in \mathcal M . To each such group G we associate a compact G -space of partial types, S^{\mu}_G(M)=\{p_{\mu}\colon p\in S_G(M)\} which is the quotient of the usual type space S_G(M) by the relation of two types being "infinitesimally close to each other". In the o-minimal setting, if p is a definable type then it has a corresponding definable subgroup Stab ^{\mu}(p) , which is the stabilizer of p_{\mu} . This group is nontrivial when p is unbounded in the sense of \mathcal M ; in fact it is a torsion-free solvable group. Along the way, we analyze the general construction of S^{\mu}_G(M) and its connection to the Samuel compactification of topological groups.
We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author's conjectures relating … We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author's conjectures relating definably compact groups $G$ in saturated $o$-minimal structures to compact Lie groups. We also prove some other structural results about such $G$, for example the existence of a left invariant finitely additive probability measure on definable subsets of $G$. We finally introduce the new notion of "compact domination" (domination of a definable set by a compact space) and raise some new conjectures in the $o$-minimal case.
We prove several structural results on definably compact groups G in o-minimal expansions of real closed fields, such as (i) G is definably an almost direct product of a semisimple … We prove several structural results on definably compact groups G in o-minimal expansions of real closed fields, such as (i) G is definably an almost direct product of a semisimple group and a commutative group, and (ii) the group (G, .) is elementarily equivalent to (G/G^00, .). We also prove results on the internality of finite covers of G in an o-minimal environment, as well as the full compact domination conjecture. These results depend on key theorems about the interpretability of central and finite extensions of definable groups, in the o-minimal context. These methods and others also yield interpretability results for universal covers of arbitrary definable real Lie groups, from which we can deduce the semialgebraicity of finite covers of Lie groups such as SL(2,R).
We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author's conjectures relating … We discuss measures, invariant measures on definable groups, and genericity, often in an NIP (failure of the independence property) environment. We complete the proof of the third author's conjectures relating definably compact groups $G$ in saturated $o$-minimal structures to compact Lie groups. We also prove some other structural results about such $G$, for example the existence of a left invariant finitely additive probability measure on definable subsets of $G$. We finally introduce a new notion "compact domination" (domination of a definable set by a compact space) and raise some new conjectures in the $o$-minimal case.
We work in an o-minimal expansion of a real closed field. Using piecewise smoothness of definable functions we define the topological degree for definable continuous functions. Using this notion of … We work in an o-minimal expansion of a real closed field. Using piecewise smoothness of definable functions we define the topological degree for definable continuous functions. Using this notion of the degree we obtain a new proof for the existence of torsion points in a definably compact group, and also a new proof of an o-minimal analogue of the Brouwer fixed point theorem.
We prove Zilber's Trichotomy Conjecture for strongly minimal expansions of two-dimensional groups, definable in o-minimal structures: Theorem. Let M be an o-minimal expansion of a real closed field, (G;+) a … We prove Zilber's Trichotomy Conjecture for strongly minimal expansions of two-dimensional groups, definable in o-minimal structures: Theorem. Let M be an o-minimal expansion of a real closed field, (G;+) a 2-dimensional group definable in M, and D = (G;+,...) a strongly minimal structure, all of whose atomic relations are definable in M. If D is not locally modular, then an algebraically closed field K is interpretable in D, and the group G, with all its induced D-structure, is definably isomorphic in D to an algebraic K-group with all its induced K-structure.
We generalize the theory of generic subsets of definably compact definable groups to arbitrary o-minimal structures. This theory is a crucial part of the solution to Pillay's conjecture connecting definably … We generalize the theory of generic subsets of definably compact definable groups to arbitrary o-minimal structures. This theory is a crucial part of the solution to Pillay's conjecture connecting definably compact definable groups with Lie groups.
Let M be an exponentially bounded o-minimal expansion of the standard structure R = (R ,+,.,<) of the field of real numbers. We prove that if r is a non-negative … Let M be an exponentially bounded o-minimal expansion of the standard structure R = (R ,+,.,<) of the field of real numbers. We prove that if r is a non-negative integer, then every definable <TEX>$C^{r}$</TEX> manifold is affine. Let f : X <TEX>${\longrightarrow}$</TEX> Y be a definable <TEX>$C^1$</TEX> map between definable <TEX>$C^1$</TEX> manifolds. We show that the set S of critical points of f and f(S) are definable and dim f(S) < dim Y. Moreover we prove that if 1 < s < <TEX>${\gamma}$</TEX> < <TEX>$\infty$</TEX>, then every definable <TEX>$C^{s}$</TEX> manifold admits a unique definable <TEX>$C^{r}$</TEX> manifold structure up to definable <TEX>$C^{r}$</TEX> diffeomorphism.
Let G be a semialgebraic group and M a proper semialgebraic G-set which is locally complete.In this paper we show that the orbit space M/G has a semialgebraic structure such … Let G be a semialgebraic group and M a proper semialgebraic G-set which is locally complete.In this paper we show that the orbit space M/G has a semialgebraic structure such that the orbit map is semialgebraic.
Abstract By recent work on some conjectures of Pillay, each definably compact group in a saturated o-minimal structure is an extension of a compact Lie group by a torsion free … Abstract By recent work on some conjectures of Pillay, each definably compact group in a saturated o-minimal structure is an extension of a compact Lie group by a torsion free normal divisible subgroup, called its infinitesimal subgroup. We show that the infinitesimal subgroup is cohomologically acyclic. This implies that the functorial correspondence between definably compact groups and Lie groups preserves the cohomology.
We prove the definability and actually the finiteness of the commutator width of many commutator subgroups in groups definable in o-minimal structures. This applies in particular to derived series and … We prove the definability and actually the finiteness of the commutator width of many commutator subgroups in groups definable in o-minimal structures. This applies in particular to derived series and to lower central series of solvable groups. Along the way, we prove some generalities on groups with the descending chain condition on definable subgroups and/or with a definable and additive dimension.
We study analogues of the notions from Lie theory of Levi subgroup and Levi decomposition, in the case of groups G definable in an o-minimal expansion of a real closed … We study analogues of the notions from Lie theory of Levi subgroup and Levi decomposition, in the case of groups G definable in an o-minimal expansion of a real closed field. With suitable definitions, we prove that G has a unique maximal ind-definable semisimple subgroup S, up to conjugacy, and that G = RS where R is the solvable radical of G. We also prove that any semisimple subalgebra of the Lie algebra of G corresponds to a unique ind-definable semisimple subgroup of G.
We produce a connected real Lie group that, as a first-order structure in the group language, interprets the real field expanded with a predicate for the integers. Moreover, the domain … We produce a connected real Lie group that, as a first-order structure in the group language, interprets the real field expanded with a predicate for the integers. Moreover, the domain of our interpretation is definable in the group.
We present a diagram surveying equivalence or strict implication for properties of different nature (algebraic, model theoretic, topological, etc.) about groups definable in o-minimal structures. All results are well-known and … We present a diagram surveying equivalence or strict implication for properties of different nature (algebraic, model theoretic, topological, etc.) about groups definable in o-minimal structures. All results are well-known and an extensive bibliography is provided.
In an o-minimal structure, every definable group admits a definable group manifold. Moreover, one can also show an analogue of this statement for definable rings. In this work, we prove … In an o-minimal structure, every definable group admits a definable group manifold. Moreover, one can also show an analogue of this statement for definable rings. In this work, we prove that every definable module over definable ring without zero divisors admits a definable module manifold. In addition, we also give the classification of definable modules over definable rings without zero divisors in o-minimal structures
Abstract In this note we show: Let R = 〈 R , &lt;, +, 0, …〉 be a semi‐bounded (respectively, linear) o‐minimal expansion of an ordered group, and G a … Abstract In this note we show: Let R = 〈 R , &lt;, +, 0, …〉 be a semi‐bounded (respectively, linear) o‐minimal expansion of an ordered group, and G a group definable in R of linear dimension m ([2]). Then G is a definable extension of a bounded (respectively, definably compact) definable group B by 〈 R m , +〉 (© 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim)
We characterize those functions f:ℂ → ℂ definable in o-minimal expansions of the reals for which the structure (ℂ,+, f) is strongly minimal: such functions must be complex constructible, possibly … We characterize those functions f:ℂ → ℂ definable in o-minimal expansions of the reals for which the structure (ℂ,+, f) is strongly minimal: such functions must be complex constructible, possibly after conjugating by a real matrix. In particular we prove a special case of the Zilber Dichotomy: an algebraically closed field is definable in certain strongly minimal structures which are definable in an o-minimal field.
We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the … We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group, in general very largely in terms of the dimension.
We continue the investigation of infinite, definably simple groups which are definable in o-minimal structures. In<italic>Definably simple groups in o-minimal structures</italic>, we showed that every such group is a semialgebraic … We continue the investigation of infinite, definably simple groups which are definable in o-minimal structures. In<italic>Definably simple groups in o-minimal structures</italic>, we showed that every such group is a semialgebraic group over a real closed field. Our main result here, stated in a model theoretic language, is that every such group is either bi-interpretable with an algebraically closed field of characteristic zero (when the group is stable) or with a real closed field (when the group is unstable). It follows that every abstract isomorphism between two unstable groups as above is a composition of a semialgebraic map with a field isomorphism. We discuss connections to theorems of Freudenthal, Borel-Tits and Weisfeiler on automorphisms of real Lie groups and simple algebraic groups over real closed fields.
Let 〈R, >,+,⋅〉 be a real closed field, and let M be an o-minimal expansion of R. We prove here several results regarding rings and groups which are definable in … Let 〈R, >,+,⋅〉 be a real closed field, and let M be an o-minimal expansion of R. We prove here several results regarding rings and groups which are definable in M. We show that every M–definable ring without zero divisors is definably isomorphic to R, R(√(−l)) or the ring of quaternions over R. One corollary is that no model of Texp is interpretable in a model of Tan.
Let M = 〈M, <, …〉 be alinearly ordered structure. We define M to be o-minimal if every definable subset of M is a finite union of intervals. Classical examples … Let M = 〈M, <, …〉 be alinearly ordered structure. We define M to be o-minimal if every definable subset of M is a finite union of intervals. Classical examples are ordered divisible abelian groups and real closed fields. We prove a trichotomy theorem for the structure that an arbitraryo-minimal M can induce on a neighbourhood of any a in M. Roughly said, one of the following holds: (i) a is trivial (technical term), or (ii) a has a convex neighbourhood on which M induces the structure of an ordered vector space, or (iii) a is contained in an open interval on which M induces the structure of an expansion of a real closed field. The proof uses 'geometric calculus' which allows one to recover a differentiable structure by purely geometric methods. 1991 Mathematics Subject Classification: primary 03C45; secondary 03C52, 12J15, 14P10.
Following their introduction in the early 1980s o-minimal structures were found to provide an elegant and surprisingly efficient generalization of semialgebraic and subanalytic geometry. These notes give a self-contained treatment … Following their introduction in the early 1980s o-minimal structures were found to provide an elegant and surprisingly efficient generalization of semialgebraic and subanalytic geometry. These notes give a self-contained treatment of the theory of o-minimal structures from a geometric and topological viewpoint, assuming only rudimentary algebra and analysis. The book starts with an introduction and overview of the subject. Later chapters cover the monotonicity theorem, cell decomposition, and the Euler characteristic in the o-minimal setting and show how these notions are easier to handle than in ordinary topology. The remarkable combinatorial property of o-minimal structures, the Vapnik-Chervonenkis property, is also covered. This book should be of interest to model theorists, analytic geometers and topologists.
This paper introduces and begins the study of a well-behaved class of linearly ordered structures, the ^-minimal structures.The definition of this class and the corresponding class of theories, the strongly … This paper introduces and begins the study of a well-behaved class of linearly ordered structures, the ^-minimal structures.The definition of this class and the corresponding class of theories, the strongly ©-minimal theories, is made in analogy with the notions from stability theory of minimal structures and strongly minimal theories.Theorems 2.1 and 2.3, respectively, provide characterizations of C-minimal ordered groups and rings.Several other simple results are collected in §3.The primary tool in the analysis of ¿¡-minimal structures is a strong analogue of "forking symmetry," given by Theorem 4.2.This result states that any (parametrically) definable unary function in an (5-minimal structure is piecewise either constant or an order-preserving or reversing bijection of intervals.The results that follow include the existence and uniqueness of prime models over sets (Theorem 5.1) and a characterization of all N0-categorical ¿¡¡-minimal structures (Theorem 6.1).