BMO: Oscillations, Self-Improvement, Gagliardo Coordinate Spaces, and Reverse Hardy Inequalities

Type: Book-Chapter

Publication Date: 2016-01-01

Citations: 7

DOI: https://doi.org/10.1007/978-3-319-30961-3_13

Abstract

A new approach to classical self improving results for BMO functions is presented. “Coordinate Gagliardo spaces” are introduced and a generalized version of the John-Nirenberg Lemma is proved. Applications are provided.

Locations

  • Association for Women in Mathematics series - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ BMO: Oscillations, self improvement, Gagliardo coordinate spaces and reverse Hardy inequalities 2015 Mario Milman
+ Addendum to "BMO: Oscillations, Self Improvement, Gagliardo Coordinate Spaces and Reverse Hardy Inequalities" 2018 Mario Milman
+ Addendum to "BMO: Oscillations, Self Improvement, Gagliardo Coordinate Spaces and Reverse Hardy Inequalities" 2018 Mario Milman
+ Some new characterizations on spaces of functions with bounded mean oscillation 2010 Dachun Yang
Yuan Zhou
+ John-Nirenberg Inequalities and Weight Invariant BMO Spaces 2017 Jarod Hart
Rodolfo H. Torres
+ John-Nirenberg Inequalities and Weight Invariant BMO Spaces 2017 Jarod Hart
Rodolfo H. Torres
+ GAGLIARDO–NIRENBERG INEQUALITIES WITH A BMO TERM 2006 Paweł Strzelecki
+ Oscillation estimates, self-improving results and good-λ inequalities 2016 Lauri Berkovits
Juha Kinnunen
José María Martell
+ PDF Chat A REVERSE "BMO"-HARDY INEQUALITY 1999 Xiao Xiao
+ PDF Chat A characterization of $${{\mathrm{BMO}}}$$ BMO self-maps of a metric measure space 2014 Juha Kinnunen
Riikka Korte
Niko Marola
Nageswari Shanmugalingam
+ Self-improving properties for abstract Poincaré type inequalities 2011 Frédéric Bernicot
José María Martell
+ The BMO-estimates of the Hardy-type Transforms 2007
+ PDF Chat John–Nirenberg Inequalities and Weight Invariant BMO Spaces 2018 Jarod Hart
Rodolfo H. Torres
+ PDF Chat Generalised Gagliardo–Nirenberg Inequalities Using Weak Lebesgue Spaces and BMO 2013 David S. McCormick
James C. Robinson
José L. Rodrigo
+ Self-improving properties of generalized Orlicz-Poincaré inequalities 2006 Toni Heikkinen
+ Vector-Valued John–Nirenberg Inequalities and Vector-Valued Mean Oscillations Characterization of BMO 2015 Kwok‐Pun Ho
+ The John–Nirenberg type inequality for non-doubling measures 2007 Yoshihiro Sawano
Hitoshi Tanaka
+ PDF Chat FUNCTIONS OF BOUNDED MEAN OSCILLATION 2006 Der–Chen Chang
Cora Sadosky
+ BMO and the John-Nirenberg Inequality on Measure Spaces 2020 Galia Dafni
Ryan Gibara
Andrew LaVigne
+ BMO and the John-Nirenberg Inequality on Measure Spaces 2020 Galia Dafni
Ryan Gibara
Andrew Lavigne