Convergence of a Higher Order Scheme for the Korteweg--De Vries Equation

Type: Article

Publication Date: 2015-01-01

Citations: 24

DOI: https://doi.org/10.1137/140982532

Abstract

We study the convergence of higher order schemes for the Cauchy problem associated with the KdV equation. More precisely, we design a Galerkin-type implicit scheme which has higher order accuracy in space and first order accuracy in time. The convergence is established for initial data in $L^2$, and we show that the scheme converges strongly in $L^2(0,T;L^2_{{loc}}(\mathbb{R}))$ to a weak solution. Finally, the convergence is illustrated by several numerical examples.

Locations

  • SIAM Journal on Numerical Analysis - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Convergence of a higher-order scheme for Korteweg-de Vries equation 2014 Rajib Dutta
Ujjwal Koley
Nils Henrik Risebro
+ Convergence of a higher-order scheme for Korteweg-de Vries equation 2014 Rajib Dutta
Ujjwal Koley
Nils Henrik Risebro
+ Error estimates of finite difference schemes for the Korteweg-de Vries equation 2017 Clémentine Courtès
Fré́dé́ric Lagoutière
Frédéric Rousset
+ Error estimates of finite difference schemes for the Korteweg-de Vries equation 2017 Clémentine Courtès
Fré́dé́ric Lagoutière
Frédéric Rousset
+ Numerical analysis with error estimates for the Korteweg-de Vries Equation 2017 Clémentine Courtès
Fré́dé́ric Lagoutière
Frédéric Rousset
+ PDF Chat Error estimates of finite difference schemes for the Korteweg–de Vries equation 2018 Clémentine Courtès
Fré́dé́ric Lagoutière
Frédéric Rousset
+ PDF Chat Efficiency of High-Order Accurate Difference Schemes for the Korteweg-de Vries Equation 2014 Kanyuta Poochinapan
Ben Wongsaijai
Thongchai Disyadej
+ Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation 2012 Helge Holden
Ujjwal Koley
Nils Henrik Risebro
+ Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation 2012 Helge Holden
Ujjwal Koley
Nils Henrik Risebro
+ PDF Chat Optimal convergence of a second-order low-regularity integrator for the KdV equation 2021 Yifei Wu
Xiaofei Zhao
+ Numerical solution of the Korteweg-de Vries (KdV) equation 1997 Pragya Jain
Rama Shankar
Dheeraj Bhardwaj
+ An energy-conserving ultra-weak discontinuous Galerkin method for the generalized Korteweg–de Vries equation 2018 Guosheng Fu
Chi‐Wang Shu
+ A RELIABLE APPROACH FOR ANALYSING THE NONLINEAR KDV EQUATION OF FRACTIONAL ORDER 2022 N. Ghanbari
K. Sayevand
I. Masti
+ An energy-conserving ultra-weak discontinuous Galerkin method for the generalized Korteweg-De Vries equation 2018 Guosheng Fu
Chi‐Wang Shu
+ PDF Chat CONVERGENCE OF A CONSERVATIVE CRANK-NICOLSON FINITE DIFFERENCE SCHEME FOR THE KDV EQUATION 2024 Mukul Dwivedi
Tanmay Sarkar
+ Convergence of a conservative Crank-Nicolson finite difference scheme for the KdV equation with smooth and non-smooth initial data 2023 Mukul Dwivedi
Tanmay Sarkar
+ Investigation of finite difference schemes for the Korteweg-De Vries equation 1992 N. D. Turetayev
+ The Korteweg–de Vries equation on the half-line 2016 A. S. Fokas
A. Alexandrou Himonas
Dionyssios Mantzavinos
+ A numerical scheme to solve the Korteweg-de Vries equation 1993 William E. Vargas
+ Convergence of Methods for the Numerical Solution of the Korteweg—de Vries Equation 1981 Pen-yü Kuo
J. M. Sanz‐Serna