Tame stacks in positive characteristic

Type: Article

Publication Date: 2008-01-01

Citations: 245

DOI: https://doi.org/10.5802/aif.2378

Abstract

We introduce and study a class of algebraic stacks with finite inertia in positive and mixed characteristic, which we call tame algebraic stacks. They include tame Deligne-Mumford stacks, and are arguably better behaved than general Deligne-Mumford stacks. We also give a complete characterization of finite flat linearly reductive schemes over an arbitrary base. Our main result is that tame algebraic stacks are étale locally quotient by actions of linearly reductive finite group schemes.

Locations

  • arXiv (Cornell University) - View - PDF
  • CiteSeer X (The Pennsylvania State University) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF
  • Annales de l’institut Fourier - View - PDF

Similar Works

Action Title Year Authors
+ Tame stacks in positive characteristic 2007 Dan Abramovich
Martin Olsson
Angelo Vistoli
+ The étale local structure of algebraic stacks 2019 Jarod Alper
Jack Hall
David Rydh
+ PDF Chat Existence of slices on a tame context 2015 Sophie Marques
+ Existence of slices in a tame context 2014 Sophie Marques
+ Existence of slices in a tame context 2014 Sophie Marques
+ PDF Chat de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities 2012 Matthew Satriano
+ de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities 2009 Matthew Satriano
+ de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities 2009 Matthew Satriano
+ Tame actions of affine group schemes and tame stacks 2012 Marques Sophie
+ PDF Chat Finite presentation of the tame fundamental group 2022 Hélène Esnault
Mark Shusterman
Vasudevan Srinivas
+ The etale local structure of algebraic stacks 2019 Jarod Alper
Jack Hall
David Rydh
+ Tame stacks and log flat torsors 2012 Jean Gillibert
Heer Zhao
+ Tame stacks and log flat torsors 2024 Jean Gillibert
Heer Zhao
+ Tame class field theory over local fields 2022 Rahul Gupta
Amalendu Krishna
Jitendra Singh Rathore
+ Finite presentation of the tame fundamental group 2021 Hélène Esnault
Mark Shusterman
Vasudevan Srinivas
+ Finite presentation of the tame fundamental group 2021 Hélène Esnault
Mark Shusterman
Vasudevan Srinivas
+ Ramified Galois covers via monoidal functors 2015 Fabio Tonini
+ Ramified Galois covers via monoidal functors 2015 Fabio Tonini
+ Adelic openness without the Mumford-Tate conjecture 2013 Chun Yin Hui
Michael Larsen
+ Adelic openness without the Mumford-Tate conjecture 2013 Chun Yin Hui
Michael Larsen