Pointwise convergence of Walsh–Fourier series of vector-valued functions

Type: Article

Publication Date: 2018-01-01

Citations: 9

DOI: https://doi.org/10.4310/mrl.2018.v25.n2.a11

Abstract

We prove a version of Carleson's Theorem in the Walsh model for vector-valued functions: For $1<p< \infty$, and a UMD space $Y$, the Walsh-Fourier series of $f \in L ^{p}(0,1;Y)$ converges pointwise, provided that $Y$ is a complex interpolation space $Y=[X,H]_\theta$ between another UMD space $X$ and a Hilbert space $H$, for some $\theta\in(0,1)$. Apparently, all known examples of UMD spaces satisfy this condition.

Locations

  • Mathematical Research Letters - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat A variation norm Carleson theorem for vector-valued Walsh–Fourier series 2014 Tuomas Hytönen
Michael T. Lacey
Ioannis Parissis
+ Walsh-Lebesgue points of multi-dimensional functions 2008 Ferenc Weisz
+ Mean Convergence of Vector--valued Walsh Series 1992 Joerg Wenzel
+ Mean Convergence of Vector--valued Walsh Series 1992 Joerg Wenzel
+ Convergence of Walsh–Fourier series in Orlicz spaces <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>L</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>φ</mml:mi><mml:mo stretchy="false">)</mml:mo><mml:mo>⊂</mml:mo><mml:mi>L</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mi>x</mml:mi></mml:msup><mml:mo stretchy="false">)</mml:mo></mml:math> 2006 С. Ф. Лукомский
+ Convergence of Walsh-Fourier series in Orlicz spaces L([phi])[subset of]L(ex) 2007 С. Ф. Лукомский
+ Strong convergence of two-dimensional Walsh-Fourier series 2014 George Tephnadze
+ Strong convergence of two-dimensional Walsh-Fourier series 2014 George Tephnadze
+ Approximation to continuous functions by Walsh-Fourier sums 1980 N. V. Guličev
+ PDF Chat Strong convergence theorems for Walsh–Fejér means 2013 George Tephnadze
+ Walsh Functions 2013 J. L. Walsh
+ PDF Chat Almost everywhere convergence of Walsh Fourier series of $H^{1}$-functions 1976 Narendrakumar Ramanlal Ladhawala
David Charles Pankratz
+ Almost everywhere convergence of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mo stretchy="false">(</mml:mo><mml:mi>C</mml:mi><mml:mo>,</mml:mo><mml:mi>α</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>-means of cubical partial sums of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>d</mml:mi></mml:math>-dimensional Walsh–Fourier series 2006 Ушанги Гогинава
+ A Note on Walsh-Fourier Series 1960 T. H. Slook
+ Approximation of functions by the Fourier-Walsh sums 1987 S. P. Baiborodov
+ Approximation by Θ-Means of Walsh—Fourier Series in Dyadic Hardy Spaces and Dyadic Homogeneous Banach Spaces 2021 István Blahota
Károly Nagy
M. Salim
+ Functions with universal Fourier-Walsh series 2020 M. G. ‎Grigoryan‎
+ Walsh Basis Functions 2007
+ Walsh Basis Functions 2007
+ Walsh functions 2010 Josef Dick
Friedrich Pillichshammer