Type: Book-Chapter
Publication Date: 2013-01-01
Citations: 104
DOI: https://doi.org/10.1007/978-1-4614-6348-1_10
We consider in this paper the rigorous justification of the Zakharov–Kuznetsov equation from the Euler–Poisson system for uniformly magnetized plasmas. We first provide a proof of the local well-posedness of the Cauchy problem for the aforementioned system in dimensions two and three. Then we prove that the long-wave small-amplitude limit is described by the Zakharov–Kuznetsov equation. This is done first in the case of cold plasma; we then show how to extend this result in presence of the isothermal pressure term with uniform estimates when this latter goes to zero.