Cancellation for the simplex Hilbert transform

Type: Article

Publication Date: 2017-01-01

Citations: 9

DOI: https://doi.org/10.4310/mrl.2017.v24.n2.a16

Abstract

We show that the truncated simplex Hilbert transform enjoys some cancellation in the sense that its norm grows sublinearly in the number of scales retained in the truncation. This extends the recent result by Tao on cancellation for the multilinear Hilbert transform. Our main tool is the Hilbert space regularity lemma due to Gowers, which enables a very short proof.

Locations

  • Mathematical Research Letters - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Power-type cancellation for the simplex Hilbert transform 2019 Polona Durcik
Vjekoslav Kovač
Christoph Thiele
+ Functional calculus estimates for Tadmor–Ritt operators 2016 Felix L. Schwenninger
+ A framework for discrete bilinear spherical averages and applications to $\ell^p$-improving estimates 2023 Theresa C. Anderson
Eyvindur A. Palsson
+ PDF Chat A framework for discrete bilinear spherical averages and applications to $\ell ^p$-improving estimates 2024 Theresa C. Anderson
Angel Kumchev
Eyvindur A. Palsson
+ A short glimpse of the giant footprint of Fourier analysis and recent multilinear advances 2020 Loukas Grafakos
+ Convex body domination for a class of multi-scale operators 2023 Aapo Laukkarinen
+ The Two Weight Inequality for the Hilbert Transform: A Primer 2013 Michael T. Lacey
+ Linear and bilinear restriction estimates for the Fourier transform 2013 Faruk Temur
+ Commutator Estimates Comprising the Frobenius Norm – Looking Back and Forth 2017 Zhiqin Lu
David Wenzel
+ The Hilbert transform 2003 José Pujol
+ PDF Chat Hilbert transforms in the Stepanoff space 1962 Sumiyuki Koizumi
+ PDF Chat Sharpening Bounds for Multilinear Schur Multipliers 2022 Anna Skripka
+ PDF Chat Cancellation for the multilinear Hilbert transform 2015 Terence Tao
+ A note on the Hankel norm 1985 J. B. Boyling
David A. Wilson
+ PDF Chat When does the norm of a Fourier multiplier dominate its L∞ norm? 2018 Alexei Yu. Karlovich
Eugene Shargorodsky
+ Endpoint bounds for the bilinear Hilbert transform 2014 Francesco Di Plinio
Christoph Thiele
+ Endpoint bounds for the bilinear Hilbert transform 2014 Francesco Di Plinio
Christoph Thiele
+ PDF Chat Reduced inequalities for vector-valued functions 2024 Tuomas Hytönen
+ The bilinear Hilbert transform 2013 Camil Muscalu
Wilhelm Schlag
+ PDF Chat A Ritt–Kreiss condition: Spectral localization and norm estimates 2024 Alejandro Mahillo
Silvia Rueda