The honeycomb model of $GL_n(\mathbb C)$ tensor products I: Proof of the saturation conjecture

Type: Article

Publication Date: 1999-04-13

Citations: 517

DOI: https://doi.org/10.1090/s0894-0347-99-00299-4

Abstract

Recently Klyachko has given linear inequalities on triples $(\lambda ,\mu ,\nu )$ of dominant weights of $GL_n(\mathbb {C})$ necessary for the corresponding Littlewood-Richardson coefficient $\dim (V_\lambda \otimes V_\mu \otimes V_\nu )^{GL_n(\mathbb {C})}$ to be positive. We show that these conditions are also sufficient, which was known as the saturation conjecture. In particular this proves Horn’s conjecture from 1962, giving a recursive system of inequalities. Our principal tool is a new model of the Berenstein-Zelevinsky cone for computing Littlewood-Richardson coefficients, the honeycomb model. The saturation conjecture is a corollary of our main result, which is the existence of a particularly well-behaved honeycomb associated to regular triples $(\lambda ,\mu ,\nu )$.

Locations

  • Journal of the American Mathematical Society - View - PDF
  • Journal of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ The honeycomb model of GL(n) tensor products I: proof of the saturation conjecture 1998 Allen Knutson
Terence Tao
+ The honeycomb model of the Berenstein-Zelevinsky polytope I. Klyachko's saturation conjecture 1998 Allen Knutson
Terence Tao
+ PDF Newell–Littlewood numbers II: extended Horn inequalities 2022 Shiliang Gao
Gidon Orelowitz
Alexander Yong
+ The honeycomb model of GL(n) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone 2001 Allen Knutson
Terence Tao
Christopher T. Woodward
+ Newell-Littlewood numbers II: extended Horn inequalities 2020 Shiliang Gao
Gidon Orelowitz
Alexander Yong
+ Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals 2018 Brett M. Collins
+ Apiary views of the Berenstein-Zelevinsky polytope, and Klyachko's saturation conjecture 1998 Allen Knutson
Terence Tao
+ PDF Chat On vanishing of Kronecker coefficients 2017 Christian Ikenmeyer
Ketan Mulmuley
Michael Walter
+ Generalized Littlewood-Richardson coefficients for branching rules of GL(n) and extremal weight crystals 2021 Brett M. Collins
+ The honeycomb model of 𝐺𝐿_{𝑛}(ℂ) tensor products II: Puzzles determine facets of the Littlewood-Richardson cone 2003 Allen Knutson
Terence Tao
Christopher T. Woodward
+ The saturation problem for refined Littlewood-Richardson coefficients 2022 Mrigendra Singh Kushwaha
K. N. Raghavan
Sankaran Viswanath
+ PDF Chat Deciding Positivity of Littlewood--Richardson Coefficients 2013 Peter Bürgisser
Christian Ikenmeyer
+ Deciding Positivity of Littlewood-Richardson Coefficients 2012 Peter Bürgisser
Christian Ikenmeyer
+ Deciding Positivity of Littlewood-Richardson Coefficients 2012 Peter Bürgisser
Christian Ikenmeyer
+ PDF A Positive Proof of the Littlewood-Richardson Rule using the Octahedron Recurrence 2004 Allen Knutson
Terence Tao
Christopher T. Woodward
+ LITTLEWOOD-RICHARDSON COEFFICIENTS AND EXTREMAL WEIGHT CRYSTALS (Representation Theory and Combinatorics) 2010 Jae-Hoon Kwon
+ PDF Generalized Littlewood–Richardson coefficients for branching rules of GL<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>and extremal weight crystals 2020 Brett M. Collins
+ Bidilatation of Small Littlewood-Richardson Coefficients 2022 Pierre-Emmanuel Chaput
Nicolas Ressayre
+ On the complexity of computing Kronecker coecients and deciding positivity of Littlewood-Richardson coecients 2008 Christian Ikenmeyer
Friedrich Eisenbrand
+ PDF A short geometric proof of a conjecture of Fulton 2011 Nicolas Ressayre