Limiting subhessians, limiting subjets and their calculus

Type: Article

Publication Date: 1997-01-01

Citations: 27

DOI: https://doi.org/10.1090/s0002-9947-97-01726-1

Abstract

We study calculus rules for limiting subjets of order two. These subjets are obtained as limits of sequences of subjets, a subjet of a function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> at some point <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x"> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding="application/x-tex">x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> being the Taylor expansion of a twice differentiable function which minorizes <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and coincides with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> at <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="x"> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding="application/x-tex">x</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. These calculus rules are deduced from approximate (or fuzzy) calculus rules for subjets of order two. In turn, these rules are consequences of delicate results of Crandall-Ishii-Lions. We point out the similarities and the differences with the case of first order limiting subdifferentials.

Locations

  • Transactions of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat The halting problem relativized to complements 1973 Louise Hay
+ PDF Chat Subordination families and extreme points 1988 Yusuf Abu-Muhanna
D. J. Hallenbeck
+ PDF Chat A note on extreme points of subordination classes 1988 D. J. Hallenbeck
+ PDF Chat Subordination and š»^{š‘} functions 1990 Rahman Younis
+ PDF Chat When are touchpoints limits for generalized PĆ³lya urns? 1991 Robin Pemantle
+ PDF Chat š»Ā¹ subordination and extreme points 1985 Yusuf Abu-Muhanna
+ PDF Chat Inverting the half-jump 1983 Steven Homer
Gerald E. Sacks
+ PDF Chat Nomographic functions are nowhere dense 1982 R. Creighton Buck
+ PDF Chat Weakly constricted operators and Jamisonā€™s convergence theorem 1989 Robert Sine
+ Weakly null sequences in šæā‚ 2006 William B. Johnson
B. Maurey
Gideon Schechtman
+ PDF Chat Subordination by univalent functions 1981 Sunder Singh
Ram Singh
+ PDF Chat On Jamesā€™ type spaces 1988 Abderrazzak Sersouri
+ PDF Chat Applications of the š‘¢-closure operator 1981 M. Solveig Espelie
James E. Joseph
Myung H. Kwack
+ PDF Chat Consecutive units 1990 Morris Newman
+ PDF Chat Iterating the basic construction 1988 Mihai Pimsner
Sorin Popa
+ Linearization and Macrogrammatical Fields 2017 Alexander Haselow
+ 0^{ā™Æ} and elementary end extensions of š‘‰_{šœ…} 2001 Amir Leshem
+ PDF Chat šœ€-selections 1992 Sam B. Nadler
+ PDF Chat Rich sets 1980 C. T. Chong
+ PDF Chat Concerning continuity apart from a meager set 1986 Janusz Kaniewski
Zbigniew Piotrowski